

These traditional cup-shaped vacuum cups are suited for gripping and handling small objects with flat, slightly concave or convex surfaces.
This series of widely used cups have diameters ranging from 4 to 9 mm and are normally available in standard compounds: natural para rubber N, oil-resistant rubber A and silicon S. They can be cold-assembled with no adhesive onto a nickelplated brass support. The support has been specially shaped to perfectly fit with the cup and it is equipped with a male threaded pin to optimise the fastening to the machine. These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound. Cups in special compounds indicated at page 21 and supports in different materials can be provided upon request in minimum quantities to be defined in the order.

Art.	Force	A	B	D	E	F	H
	Kg	\emptyset	\emptyset	\emptyset			
010410 *	0.03	3	1.5	4	6.0	7.0	7.5
010510 *	0.05	3	1.5	5	6.0	7.0	8.0
010610 *	0.07	3	1.5	6	6.0	7.0	8.0
010707 *	0.10	5	2.0	7	6.0	6.0	7.0
010810 *	0.12	5	2.5	8	6.0	7.0	8.0
010907 *	0.15	5	2.0	9	5.5	6.0	7.0

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS										
Art.	A	B	D	E	F	G	H	Support material	Cup art.	Weight g
$\mathbf{0 0 0 0 0 1 0 1}$	M5	7	2.90	3	5	10	18	brass	010410	4
										010510

Art.	Force	A	B	D	E	F	G	H	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset					Art.	Art.	g
080410 *	0.03	M5	7	4	3	5	13.0	21.0	010410	000801	4
080510 *	0.05	M5	7	5	3	5	13.5	21.5	010510	000801	4
080610 *	0.07	M5	7	6	3	5	13.5	21.5	010610	000801	4
080707 *	0.10	M5	7	7	3	5	13.5	21.5	010707	000802	4
080810 *	0.12	M5	7	8	3	5	13.5	21.5	010810	000802	4
080907 *	0.15	M5	7	9	3	5	12.5	20.5	010907	000802	4

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

CUPS WITH SUPPORT

These traditional cup-shaped vacuum cups are suited for gripping and handling small objects with flat, slightly concave or convex surfaces.
This series of widely used cups have diameters ranging from 10 to 45 mm and are normally available in standard compounds: natural para rubber N, oilresistant rubber A and silicon S.
They can be cold-assembled with no adhesive onto a nickel-plated brass or anodised aluminium support. The support has been specially shaped to perfectly fit with the cup and it is equipped with a male threaded pin to optimise the fastening to the machine.
These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound. Cups in special compounds indicated at page 21 and supports in different materials can be provided upon request in minimum quantities to be defined in the order.

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Art.	$\begin{aligned} & \mathrm{A} \\ & \emptyset \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \emptyset \end{aligned}$	E	F	G	H	T	Support material	Cup art.	Weight g
000803	G1/8"	5.5	5	8	7.0	20.0	12	brass	011010	9
									011210	
									011510	
									011810	
									012010	
									012210	
000805	G1/8"	7.5	5	8	9.5	22.5	12	brass	012515	10
									013015	
000820	G1/4"	12.0	8	14	10.0	32.0	17	aluminium	013515	11
									014015	
									014515	

Art.	Force	A	D	E	F	G	H	T	Cup	Support	Weight
	Kg	\emptyset	\emptyset						Art.	Art.	g
081010 *	0.19	G1/8"	10	5	8	11	24	12	011010	000803	9.0
081210 *	0.28	G1/8"	12	5	8	11	24	12	011210	000803	9.6
081510 *	0.44	G1/8"	15	5	8	12	25	12	011510	000803	9.7
081810 *	0.63	G1/8"	18	5	8	12	25	12	011810	000803	9.7
082010 *	0.78	G1/8"	20	5	8	12	25	12	012010	000803	9.8
0822 10*	0.95	G1/8"	22	5	8	13	26	12	012210	000803	10.2
082515 *	1.23	G1/8"	25	5	8	16	29	12	012515	000805	12.0
083015 *	1.76	G1/8"	30	5	8	17	30	12	013015	000805	12.7
083515 *	2.40	G1/4"	35	8	14	16	38	17	013515	000820	13.6
084015 *	3.14	G1/4"	40	8	14	18	40	17	014015	000820	14.1
084515 *	3.98	G1/4"	45	8	14	23	45	17	014515	000820	17.6

[^0]

These traditional cup-shaped vacuum cups are suited for gripping and handling small objects with flat, slightly concave or convex surfaces.
This series of widely used cups have diameters ranging
from 10 to 45 mm and are normally available in standard compounds: natural para rubber N, oil-resistant rubber A and silicon S.
They can be cold-assembled with no adhesive onto a nickelplated brass or anodised aluminium support. The support has been specially shaped to perfectly fit with the cup and it is equipped with a male threaded pin to optimise the fastening to the machine. These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table
in the desired compound.
Cups in special compounds indicated at page 21 and supports in different materials can be provided upon request in minimum quantities to be defined in the order.

Art.	Force	A	B	D	E	F	H
	Kg	\emptyset	\emptyset	\emptyset			
0110 10*	0.19	7	4.0	10	8.5	8.5	11.0
0112 10*	0.28	8	4.0	12	8.0	9.0	11.0
0115 10	0.44	8	4.0	15	8.0	9.5	12.0
011810 *	0.63	8	4.0	18	8.0	9.5	12.0
0120 10	0.78	8	4.0	20	8.0	9.5	12.0
0122 10*	0.95	8	4.0	22	8.0	10.0	13.0
0125 15	1.23	12	6.0	25	10.0	11.5	16.0
013015 *	1.76	12	6.0	30	10.0	12.5	17.0
013515 *	2.40	15	10.0	35	10.0	11.5	16.0
0140 15	3.14	15	10.0	40	10.0	12.5	18.0
0145 *	3.98	15	10.0	45	10.0	14.5	23.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH SUPPORT

Art.	Force	A	D	E	F	G	H	T	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	Support Art.	Weight g
	Kg	\emptyset	\emptyset								
081025 *	0.19	G1/8"	10	13	10	11	24	12	011010	000804	8.1
081225 *	0.28	G1/8"	12	13	10	11	24	12	011210	000804	8.7
081525 *	0.44	G1/8"	15	13	10	12	25	12	011510	000804	8.8
081825 *	0.63	G1/8"	18	13	10	12	25	12	011810	000804	8.8
082025 *	0.78	G1/8"	20	13	10	12	25	12	012010	000804	9.3
082225 *	0.95	G1/8"	22	13	10	13	26	12	012210	000804	9.3
082525 *	1.23	G1/8"	25	13	10	16	29	12	012515	000814	11.8
083025 *	1.76	G1/8"	30	13	10	17	30	12	013015	000814	12.5
083525 *	2.40	G1/4"	35	17	13	16	33	17	013515	000821	11.9
084025 *	3.14	G1/4"	40	17	13	18	35	17	014015	000821	12.4
084525 *	3.98	G1/4"	45	17	13	23	40	17	014515	000821	15.9

[^1]
CUPS WITH SUPPORT

These traditional cup-shaped vacuum cups are suited
for gripping and handling small objects with flat,
slightly concave or convex surfaces.
This series of widely used cups have diameters ranging
from 25 to 35 mm and are normally available in standard compounds: natural para rubber N, oil-resistant rubber A and silicon S.
They can be cold-assembled with no adhesive onto a nickel-plated brass support.
The support has been specially shaped to perfectly fit with the cup and it is equipped with a male threaded pin to optimise the fastening to the machine.
These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound.
Cups in special compounds indicated at page 21 and
 supports in different materials can be provided upon request in minimum quantities to be defined in the order.

Art.	Force	A	B	D	E	F	H
	Kg	\emptyset	\emptyset	\emptyset			
012510 *	1.23	12	6	25	2	3.5	8
013010 *	1.76	12	6	30	1	3.5	8
013510 *	2.40	12	6	35	1	3.5	8

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORTS								
Art.	A	E	F	H	SW	Support material	Cup art.	Weight g
$\mathbf{0 0 0 8 0 8}$	M6	3.5	10	14.5	3	brass	012510	2.7
							013010	
$\mathbf{0 0 0 8 6 0}$	G1/8"	4.0	10	14.5	4	brass	013510	012510
							5.6	
							013010	

3D drawings available at www.vuototecnica.net
CUPS WITH SUPPORT

Art.		Force Kg	A \emptyset	SW	D \emptyset	Cup Art.	Support Art.
$\mathbf{0 8 \mathbf { 2 5 } \mathbf { 1 0 } \text { * }}$	1.23	M6	3	25	012510	000808	Weight
$\mathbf{0 8} \mathbf{2 5} \mathbf{1 1}$ *	1.23	G1/8"	4	25	012510	000860	6.8
$\mathbf{0 8} \mathbf{3 0} \mathbf{1 0}$ *	1.76	M6	3	30	013010	000808	4.6
$\mathbf{0 8} \mathbf{3 0} \mathbf{1 1}$ *	1.76	G1/8"	4	30	013010	000860	7.5
$\mathbf{0 8} \mathbf{3 5} \mathbf{1 0}$ *	2.40	M6	3	35	013510	000808	5.1
$\mathbf{0 8} \mathbf{3 5} \mathbf{1 1}$ *	2.40	G1/8"	4	35	013510	000860	8.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon 60 mm and are normally available in standard compounds: natural para rubber N, oil-resistant rubber A and silicon S. They can be cold-assembled with no adhesive onto an anodised aluminium support.
The support has been specially shaped to perfectly fit with the cup and it is equipped with a male threaded pin to optimise the fastening to the machine. Moreover, those with $1 / 4$ " thread have an M8 threaded hole, to allow the possible insertion of a calibrated grub screw (see page 1.118) to reduce the amount of sucked air. These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the
desired compound.
Cups in special compounds indicated at page 21 and supports in different materials can be provided upon request in minimum quantities to be defined in the order.

CUPS										
Art.	Force	A	B	C	D	E	F	G	H	I
	Kg	\emptyset	\emptyset	\emptyset	\emptyset					
$\mathbf{0 1 4 5 \mathbf { 1 0 }}$	3.98	15	10	--	45	5	9.5	--	18	--
$\mathbf{0 1 6 0 1 0}$	7.06	15	10	25	60	4	--	10	22	2.5

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS

Art.	A	E	C	Support	Cup	Weight
	\emptyset		\emptyset	material	art.	g
$\mathbf{0 0 0 8 \mathbf { 0 2 }}$	G1/4"	10	M8	aluminium	014510	5.9
					016010	
$\mathbf{0 0 0 8 4 4}$	G1/8"	--	-	aluminium	014510	5.1
					016010	

CUPS WITH SUPPORT

Art.	Force	A	D	M	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	Art.	Art.	g
084510 *	3.98	G1/4"	45	M8	014510	000822	12.6
084511 *	3.98	G1/8"	45	--	014510	000844	11.8

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH SUPPORT

Art.		Force	A	D	M	Cup	Support
	Kg	\emptyset	\emptyset	\emptyset	Art.	Art.	Weight
$\mathbf{0 8 6 0 1 0}$	7.06	$\mathrm{G} 1 / 4^{\prime \prime}$	60	M 8	016010	000822	20.8
$\mathbf{0 8 6 0 1 1 *}$	7.06	$\mathrm{G} 1 / 8^{\prime \prime}$	60	--	016010	000844	20.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH SUPPORT

These traditional cup-shaped vacuum cups are suited for gripping and handling small objects with flat, slightly concave or convex surfaces.
This series of widely used cups have diameters of 85 mm and are normally available in standard compounds: natural para rubber N, oil-resistant rubber A and silicon S.
They can be cold-assembled with no adhesive onto an anodised aluminium support.
The support has been specially shaped to perfectly fit with the cup and it is equipped with a male threaded pin to optimise the fastening to the machine. Moreover, those with $1 / 4$ " thread have an M8 threaded hole, to allow the possible insertion of a calibrated grub screw (see page 1.118) to reduce the amount of sucked air.
These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound.
Cups in special compounds indicated at page 21 and supports in different materials can be provided upon request in minimum quantities to be defined in the order.

CUPS

Art.	Force	A	B	C	D	E	G	H	I
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				
$\mathbf{0 1 \mathbf { 8 5 1 0 } \text { * }}$	14.18	25	15	25	85	16	23	41	4.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

3D drawings available at www.vuototecnica.net

SUPPORTS					
Art.	A	D	Support	Cup	Weight
	\emptyset	\emptyset	material	art.	g
$\mathbf{0 0 0 \mathbf { 0 8 } \mathbf { 2 8 }}$	$\mathrm{G} 1 / 4^{\prime \prime}$	25	aluminium	018510	13.4
$\mathbf{0 0 0 0 1 3 6}$	$\mathrm{G1} / 8^{\prime \prime}$	25	aluminium	018510	9.2

Art.	Force	A	D	Cup	Support	Weight
	Kg	\emptyset	\emptyset	Art.	Art.	g
088510 *	14.18	G1/4"	85	018510	000828	49.3
088512 *	14.18	G1/8"	85	018510	0008136	45.1

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

These traditional cup-shaped vacuum cups are suited for gripping and handling small objects with flat, slightly concave or convex surfaces.

This series of widely used cups have diameters of 85 mm and are normally available in standard compounds: natural para rubber N, oil-resistant rubber A and silicon S.
They can be cold-assembled with no adhesive onto an anodised aluminium support.
IThe support has been specially shaped to perfectly fit with the cup and it is equipped with a female threaded pin to optimise the fastening to the machine.
These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound.
Cups in special compounds indicated at page 21 and supports in different materials can be provided upon request in minimum quantities to be defined in the order.

CUPS									
Art.	Force	A	B	C	D	E	G	H	I
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				
$\mathbf{0 1 \mathbf { 8 5 1 0 }}$	14.18	25	15	25	85	16	23	41	4.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH VULCANISED SUPPORT

These sturdy and rather deep cups are designed to handle bodywork components in moulded sheet steel.
These cups are produced with a special compound called BENZ, which can resist to heavy loads and to the chlorine usually contained in the oil used for moulding and drawing of the sheet steel.
The galvanised steel support is vulcanised onto the cup. Galvanised steel adapters are also available to allow modifying the suction connection from M10 to gas or NPT threads.
Cups in special compounds indicated at page 21 can be provided upon request in minimum quantities to be defined in the order.

CUPS WITH VULCANISED SUPPORT

Art.	Force Kg	D \emptyset	E	F	G	H	Support material	Weight g
$\mathbf{0 8 \mathbf { 3 0 } \mathbf { 3 8 } \text { * }}$	1.80	30	20	17	10	37	steel	20.8
$\mathbf{0 8 4 0} \mathbf{4 1}$ *	3.20	40	23	18	12	41	steel	24.9

* Complete the code indicating the compound: $B=B E N Z$ rubber; $N=$ natural para rubber; $S=$ silicon

3D drawings available at www.vuototecnica.net

CUPS WITH VULCANISED SUPPORT								
Art.	Force Kg	E	F	G	H	Support material	Weight g	
$\mathbf{0 8 \mathbf { 8 0 } \mathbf { 5 0 }}$	12.60	33	18	26	51	steel	58.0	

* Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

REDUCTIONS					
Art.	D	d	H	Reduction	Weight
	\emptyset	\emptyset		material	g
0008130 *	G1/4"	M10	14	steel	4.9
0008131 *	G3/8"	M10	14	steel	12.8
0008254 *	$1 / 4^{\prime \prime}$ NPT	M10	14	steel	4.8
0008255 *	3/8" NPT	M10	14	steel	12.7

These cups are specially designed for gripping moulded or drawn sheet metal and are largely used in the automotive sector. Their ground lip allows an immediate gripping of the load to be lifted as soon as contact is made and ensures perfect vacuum seal.
These cups are produced in a special compound called BENZ, able to withstand chlorine usually contained in the oils used for moulding and drawing the sheet metal.
The galvanised steel support is vulcanised onto the cup.
They are obviously available also in natural para rubber and

Art.	Force	A	B	C	D	E	G	H	Support	Weight
	Kg	\emptyset	\emptyset		\emptyset				material	g
0850 40*	4.90	31	G3/8"	--	50	16.0	6.5	29.0	steel	38.5
085040 GR *	4.90	31	G3/8"	G1/8"	50	16.0	6.5	29.0	steel	38.5
087540 *	11.04	31	G3/8"	--	75	25.0	9.0	38.0	steel	57.9
087540 GR *	11.04	31	G3/8"	G1/8"	75	25.0	9.0	38.0	steel	57.9
0810040 *	19.62	32	G3/8"	--	100	26.0	9.0	39.0	steel	78.3
0810040 GR *	19.62	32	G3/8"	G1/8"	100	26.0	9.0	39.0	steel	78.3
0810050 *	19.62	32	G3/8"	--	100	30.5	15.0	43.5	steel	74.8
0810050 GR *	19.62	32	G3/8"	G1/8"	100	30.5	15.0	43.5	steel	74.8
085040 1/4"*	4.90	31	G1/4"	--	50	16.0	6.5	29.0	steel	37.4
087540 1/4"*	11.04	31	G1/4"	--	75	25.0	9.0	38.0	steel	57.6
0810040 1/4"*	19.62	32	G1/4"	--	100	26.0	9.0	39.0	steel	76.8
0810050 1/4"*	19.62	32	G1/4"	--	100	30.5	15.0	43.5	steel	74.3
$085040 \mathrm{M10}$ *	4.90	31	M10	--	50	16.0	6.5	29.0	steel	32.7
$087540 \mathrm{M10}$ *	11.04	31	M10	--	75	25.0	9.0	38.0	steel	49.9
$0810040 \mathrm{M10}$ *	19.62	32	M10	--	100	26.0	9.0	39.0	steel	72.1
$0810050 \mathrm{M10}$ *	19.62	32	M10	--	100	30.5	15.0	43.5	steel	70.2
$085040 \mathrm{M14}$ *	4.90	31	M14	--	50	16.0	6.5	29.0	steel	34.8
087540 M14 *	11.04	31	M14	--	75	25.0	9.0	38.0	steel	54.9
0810050 M14*	19.62	32	M14	--	100	30.5	15.0	43.5	steel	74.9

* Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	Force	A	B	D	E	G	H	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset				material	g
085040 F *	4.90	31	G3/8"	50	16.0	6.5	32.5	steel	49.5
087540 F *	11.04	31	G3/8"	75	25.0	9.0	41.5	steel	68.3
0810040 F *	19.62	32	G3/8"	100	26.0	9.0	42.5	steel	89.3
0810050 F *	19.62	32	G3/8"	100	30.5	15.0	47.0	steel	88.8

[^2]

CUPS WITH VULCANISED SUPPORT

These cups are very similar to those described in the previous page, they differ only for their round lip and their internal cleats.
These features allow them to be used even in the heaviest conditions.
The field of use is the same.
They are also made with BENZ compond and the galvanised steel support is vulcanised onto the cup. These cups are also available in natural para rubber and silicon.

Art.	Force	A	B	D	E	G	H	Support material	Weight g
	Kg	\emptyset	\emptyset	\emptyset					
0850 99*	4.90	30	G3/8"	50	23.5	9	36.5	steel	43.2
087599 *	11.04	35	G3/8"	75	23.5	9	36.5	steel	59.2
0810099 *	19.62	35	G3/8"	100	40.0	12	53.0	steel	113.2
085099 1/4" *	4.90	30	G1/4"	50	23.5	9	36.5	steel	39.4
087599 1/4"*	11.04	35	G1/4"	75	23.5	9	36.5	steel	55.2
0810099 1/4"*	19.62	35	G1/4"	100	40.0	12	53.0	steel	109.2

* Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	Force	A	B	D	E	G	H	Support material	Weight g
	Kg	\emptyset	\emptyset	\emptyset					
085099 F *	4.90	31	G3/8"	50	23.5	9	40.0	steel	55.6
087599 F *	11.04	35	G3/8"	75	23.5	9	40.0	steel	70.5
0810099 F *	19.62	35	G3/8"	100	40.0	12	56.5	steel	118.8

* Complete the code indicating the compound: $B=B E N Z$ rubber; $N=$ natural para rubber; $S=$ silicon

These cups have been created as an alternative to the ordinary cups used in the robot-automotive field and they offer an excellent solution
 to gripping and handling problems that could arise on vacuum-driven handlers in every industry sector.
They can be both flat and bellow-type, round and oval and equipped with support. The extremely flexible outside lip, can be associated with the typical features of the bellow cups, allow them to adapt themselves on flat, concave and convex surfaces with no risk of deforming or breaking even the thinnest objects to be handled.
The innovative design of the inside of the cups, which facilitates the drainage of oil and water, ensures a high friction coefficient with the
gripping surface and, in particular, a unique grip on oil-covered metal sheets or wet glass or marble sheets. This particular feature guarantees a firm grip and, therefore, an accurate placemet of the load to be handled. The MAXIGRIP standard cups are made with our exclusive BENZ compound:

- Hardness $60 \div 75^{\circ}$ Sh.;
- Working temperature between -40 and $+170{ }^{\circ} \mathrm{C}$;
- Stain-resistant;
- Excellent resistance to abrasion, water and to oils containing chlorine.

Their galvanised steel support is vulcanised onto the cup.
A wide range of accessories, such as adapters, couplers and articulated
joints, allows them to be installed on any vacuum-driven handler.
Because of their universality of use, these cups can also be provided in the special compounds listed at page 21.

CIRCULAR FLAT AND BELLOW CUPS

Art.	Force Kg	$\begin{aligned} & \mathrm{A} \\ & \emptyset \end{aligned}$	$\begin{aligned} & { }^{\circ} B \\ & \emptyset \end{aligned}$	Ch	$\begin{aligned} & \mathrm{D} \\ & \emptyset \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \emptyset \end{aligned}$	E	F	G	H	I	SW	Support material	Weight g
VRP 40*	3.14	26	G1/4"	15	40	17	16	14	4.0	31	15	6	steel	33.6
VRP 50*	4.90	30	G3/8"	19	50	21	18	14	5.0	33	15	6	steel	49.3
VRP 60*	7.06	30	G3/8"	19	60	21	21	14	6.0	36	15	6	steel	55.3
VRP 80 *	12.56	35	G3/8"	19	80	21	25	14	7.5	40	15	6	steel	74.9
VRP 100*	19.62	35	G3/8"	19	100	21	25	14	9.5	40	15	6	steel	80.7
VRP 125*	30.66	35	G3/8"	19	125	21	33	14	12.5	48	15	6	steel	139.6

* Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
${ }^{\circ}$ Available with NPT thread. Order example: VRP 80 NPT B

BELLOW CUP WITH VULCANISED SUPPORT

Art.	Force Kg		$\begin{aligned} & \hline \mathrm{B} \\ & \emptyset \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \emptyset \end{aligned}$		$\begin{aligned} & \mathrm{D} \\ & \emptyset \end{aligned}$	\emptyset	E	F	G	H		\emptyset	Support material	Veight g
VRS 40 *	3.14	3	30	G1/4"	17	40	24	21.0	10	7.0	35.0	14	G1/8"	steel	56.3
VRS 50 *	4.90		40	G3/8"	22	50	34	21.0	10	7.0	36.0	15	G1/4"	steel	77.6
VRS 60 *	7.066		50	G3/8"	22	60	44	21.0	10	7.0	36.0	15	G1/4"	steel	107.9
VRS 80 *	12.56		70	G3/8"	22	80	64	23.0	10	9.0	38.0	15	G1/4"	steel	205.9
VRS 100*	19.6210		80	G3/8"	22	100	79	29.0	10	13.0	44.0	15	G1/4"	steel	269.0
VRS 125 *	30.6612		105	G3/8"	22	125	100	32.5	10	16.5	47.5	15	G1/4"	steel	464.2

[^3]

OVAL CUPS WITH VULCANISED SUPPORT

Art.	Force	A	B	${ }^{\circ} \mathrm{C}$	Ch	D	E	F	G	H	I	L	M	Support	Weight
	Kg			\emptyset									\emptyset	Material	g
VEP 30 60*	4.01	47	17	G1/4"	17	60	13	10	3	27	14	30	G1/8"	steel	42.6
VEP 30 90*	6.26	77	17	G1/4"	17	90	13	10	3	27	14	30	G1/8"	steel	63.5
VEP 4080 *	7.14	70	30	G1/4"	17	80	14	10	4	28	14	40	G1/8"	steel	68.0
VEP 50100 *	11.15	80	30	G3/8"	22	100	16	10	5	31	15	50	G1/4"	steel	110.0
VEP 60120 *	16.06	95	35	G3/8"	22	120	18	10	6	33	15	60	G1/4"	steel	156.1
VEP 70 140*	21.86	110	40	G3/8"	22	140	19	10	7	34	15	70	G1/4"	steel	199.4

* Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
${ }^{\circ}$ Available with NPT thread. Order example: VEP 4080 NPT B

OVAL BELLOW CUPS WITH VULCANISED SUPPORT

Art.	Force Kg	A	B	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & 0 \end{aligned}$	Ch	D	E	F	G	H	K	I	L	$\begin{gathered} M \\ \emptyset \end{gathered}$	N	0	Support material	Weight g
VES 30 60*	4.01	50	20	G1/4"	17	60	21	10	7.0	35	63	14	33	G1/8"	30	44.5	steel	49.5
VES 4080 *	7.14	70	30	G1/4"	17	80	23	10	9.0	37	83	14	43	G1/8"	40	64.0	steel	91.9
VES 50100 *	11.15	80	30	G3/8"	22	100	29	10	13.0	44	103	15	53	G1/4"	50	79.0	steel	125.3
VES 70140 *	21.86	110	40	G3/8"	22	140	33	10	16.5	48	143	15	73	G1/4"	70	109.0	steel	227.8

[^4]

MF REDUCTIONS FOR VRP CUPS						
Art.	D	d	F	H	SW	Weight g
$\mathbf{0 0 0 8 \mathbf { 0 8 1 5 }}$	\emptyset	$\mathrm{G} / 8^{\prime \prime}$	$\mathrm{G} 1 / 4^{\prime \prime}$	8	14	6

MF REDUCTIONS FOR VRS - VEP - VES CUPS

Art.	D	d	F	H	SW	Weight g
	\emptyset	\emptyset				
$\mathbf{0 0 0 8 2 1 6}$	$G 3 / 8^{\prime \prime}$	$G 1 / 4^{\prime \prime}$	8	11.5	6	6.0

Art.	D	d	E	F	SW	Weight
	\emptyset	\emptyset				g
0008217	G1/4"	G1/4"	15	10	6	16.7
0008218	G1/4"	$\mathrm{M} 10 \times 1.5$	15	12	6	10.2
0008219	G1/4"	M14 $\times 1.5$	15	12	6	16.0
0008220	G3/8"	G1/4"	14	10	6	18.4
0008221	G3/8"	$\mathrm{M} 10 \times 1.5$	14	12	6	16.3
0008222	G3/8"	M14 $\times 1.5$	14	12	6	22.5

Art.	D	d	E	F	SW	Weight g
	\emptyset	\emptyset				
0008223	G1/4"	G1/4"	11.5	10	6	13.9
0008224	G1/4"	M10 $\times 1.5$	13.0	12	6	10.1
0008225	G1/4"	M14 $\times 1.5$	13.0	12	6	15.8
0008226	G3/8"	G1/4"	10.5	11	6	16.6
0008227	G3/8"	M10 $\times 1.5$	10.5	13	6	14.2
0008228	G3/8"	M14 $\times 1.5$	10.5	13	6	20.2

MAXIGRIP CUP ACCESSORIES

In this page are described accessories for MAXIGRIP CUPS. The galvanised steel MF reduction is suited for all cups with female 1/4" gas thread connection and allows increasing it to $3 / 8$ " gas, always female.
The AQ adapters with square, flange and male and female thread connections are made with anodised aluminium and are suited for robotic gripping systems. They allow quick installation of the cups on the profiles used in the automotive sector.
The built-in seal guarantees perfect vacuum seal.

SQUARE REDUCTION FOR VRP-VRS-VEP-VES CUPS

Art.	H	E	F	D	d	Material	Weight	Spare
								0 -ring
				\emptyset	\emptyset		g	art.
AQ 32 1/8"	13	4.6	8.4	G1/8"	5	aluminium	11.8	0008214
AQ 32 1/4"	13	4.6	8.4	G1/4"	5	aluminium	13.2	0008214
AQ 32 3/8"	13	4.6	8.4	G3/8"	5	aluminium	15.6	0008214
AQ 32 1/2"	13	4.6	8.4	G3/8"	5	aluminium	17.2	0008214

Art.	H	E	F	D	d	Material	Weight	Spare 0 -ring
				\emptyset	\emptyset		g	art.
AQS 32 1/8"	16.1	4.6	11.5	G1/8"	5	aluminium	12.2	0008214
AQS 32 1/4"	20.0	4.6	15.4	G1/4"	5	aluminium	13.6	0008214
AQS 32 3/8"	20.0	4.6	15.4	G3/8"	5	aluminium	16.2	0008214
AQS 32 1/2"	20.0	4.6	15.4	G1/2"	5	aluminium	17.8	0008214

SQUARE REDUCTION FOR VRP-VRS-VEP-VES CUPS

Art.	H	E	F	D	d	Material	Weight	Spare 0-ring
art.								

FLAT CIRCULAR CUPS WITH SUPPORT

The cups described in this page have been designed to solve most of the gripping problems that can arise handling wooden or plastic panels, thin glass or marble sheets, fragile metal sheets, ceramic or baked clay tiles, etc.
Their low, stong and slightly tilted lip does not swipe on the loading surface during the gripping phase.
The cleats on the inside of these cups, along with reducing the volume of air to be sucked, create a perfect supporting surface which prevents any gripping surface deformation as well as the vertically lifted load from slipping. These cups can be coldassembled, with no adhesives, onto their anodised aluminium support and locked by the ring nut.
These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound.

*omplete the code indicating the compound: A= oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	A	C	D	E	F	G	H	I	Support/ring nut material	Cup art.	Ring nut art.	Weight g
0008108	G1/4"	34	35	9	19.5	4.5	33.0	4.5	aluminium	017624	0008109	31.2
										$\begin{aligned} & 019024 \\ & 0111024 \end{aligned}$		
0008110	G3/8"	34	35	9	19.5	4.5	33.0	4.5	aluminium	017624	0008111	33.7
										019024		
										0111024		
0008112	G3/8"	69	69	15	22.0	5.5	42.5	6.0	aluminium	0115036	0008113	132.1

Note: By ordering the support, the ring nut will be automatically provided

Art.	Force	A	D	E	F	H	Cup	Support	Ring nut	Weight
	Kg	\emptyset	\emptyset				Art.	Art.	Art.	g
087624 1/4"*	11.33	G1/4"	76	24	14	38	017624	0008108	0008109	83.1
089024 1/4"*	15.89	G1/4"	90	24	14	38	019024	0008108	0008109	112.0
0811024 1/4"*	23.74	G1/4"	110	24	14	38	0111024	0008108	0008109	168.2
$0876243 / 8$ " *	11.33	G3/8"	76	24	14	38	017624	0008110	0008111	85.6
$0890243 / 8^{\prime \prime}$ *	15.89	G3/8"	90	24	14	38	019024	0008110	0008111	114.5
0811024 3/8" *	23.74	G3/8"	110	24	14	38	0111024	0008110	0008111	170.7
0815036 *	45.00	G3/8"	150	36	14	50	0115036	0008112	0008113	436.5

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

The cups described in this page has been designed for gripping soft drink cans. They can obviously be also used for gripping other objects with flat smooth or slightly rough surfaces.
The shape of its lip allows a firm grip of the load to be handled, eliminating any oscillation and reducing the air volume contained within, thus allowing a quicker grip and release.
These cups can be cold-assembled, with no adhesives, onto their anodised aluminium support equipped with a threaded hole in the centre to allow their fastening to the machine. These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound.

CUP				B	C	D	F
Art.	Force	A	B	H			
	Kg	\emptyset	\emptyset	\emptyset	\emptyset		
$\mathbf{0 1 5 6 \mathbf { 1 5 } \text { * }}$	6.15	56	48	44	56	11	15

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH SUPPORT										
Art.	Force	A	B	C	D	F	H	Cup	Support.	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			Art.	Art.	g
0856 15 *	6.15	48.5	M12	5	56	11	18	015615	000883	78

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

FLAT CIRCULAR CUPS WITH SUPPORT

These cups feature a particularly thin and soft lip, which allows it to grip very rough surfaces. Its supporting surface with cleats guarantees a firm grip on the load to be handled. These cups have been specially designed for gripping ceramic tiles with smooth, rough and non-slip surfaces, although, due to their features, they can also be used for handling glass, marble and cement manufactures.
These cups can be cold-assembled, with no adhesives, onto their anodised aluminium support equipped with a threaded hole in the centre to allow their fastening to the machine.
These cups are extremely easy to replace; for the spare part, in fact, all you have to do is request the cup indicated in the table in the desired compound

Art.	Force	A	B	C	D	H	M
	Kg	\emptyset	\emptyset	\emptyset	\emptyset		\emptyset
0180 20	12.56	58	54	45	80	20	17

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORTS

Art.	A	B	D	E	H	Support material	Cup art.	Weight g
	\emptyset	\emptyset	\emptyset					
0008126	45	M12	54	3	10	aluminium	018020	45.5
0008143	45	G1/2"	54	3	10	aluminium	018020	41.5

These cups have been designed, in particular, for handling metal sheets, glass, wooden panels, marble granite and other similar
 materials.
The shape of its lip allows a firm grip of the load to be handled, eliminating any oscillation and reducing the air volume contained within, thus allowing a quicker grip and release.
These cups are provided with cleats which, besides avoiding
the load to bend in correspondence of the gripping point, also have the purpose to increase the friction surface with the vertically lifted load, preventing it from slipping. They are normally available in the three standard compounds, but can be supplied in special compounds and in a minimum amount to be defined in the order, upon request.
These cups can be cold-assembled, with no adhesives, on their anodised aluminium support equipped with a threaded hole in the centre to allow its fastening to the machine and, upon request, it can be supplied with a side hole with gas thread for the suction fitting.

These cups are extremely easy to replace; for the spare part,
in fact, all you have to do is request the cup indicated in the table in the desired compound.

CUPS											
Art.	Force	A	B	C	D	E	F	H	M	N	0
	Kg	\emptyset	\emptyset	\emptyset	\emptyset					\emptyset	\emptyset
0165 15*	8.29	68	63	59	65	3	7	17	--	27	--
016516 *	8.29	68	63	59	65	3	7	17	21	27	4.5

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS										
Art.	A	B	C	D	E	H	M	Cup art.	Support material	Weight g
	\emptyset	\emptyset	\emptyset	\emptyset						
000832	60	M12	--	64	3	10	--	016515	aluminium	80.6
000236	60	M8	G1/4"	64	3	10	21	016516	aluminium	78.1
000613	60	M12	G1/4"	64	3	10	21	016516	aluminium	77.1

Art.	Force	A	B	C	D	F	H	M	0	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	Art.	Art.	g
0865 15 *	8.29	69	M12	--	65	10	17	--	--	016515	000832	102.0
086516 *	8.29	69	M8	G1/4"	65	10	17	21	4.5	016516	000236	100.0
086517 *	8.29	69	M12	G1/4"	65	10	17	21	4.5	016516	000613	98.5

[^5]
FLAT CIRCULAR CUPS WITH SUPPORT

Art.	Force	A	B	C	D	E	F	H	M	N	0
	Kg	\emptyset	\emptyset	\emptyset	\emptyset					\emptyset	\emptyset
0185 15*	14.18	68	63	59	85	3	7	17	--	27	--
0185 16 *	14.18	68	63	59	85	3	7	17	21	27	4.5

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORTS										
Art.	A	B	C	D	E	H	M	Cup	Support	Weight
	\emptyset	\emptyset	\emptyset	\emptyset				art.	material	g
000832	60	M12	--	64	3	10	--	018515	aluminium	80.6
000236	60	M8	G1/4"	64	3	10	21	018516	aluminium	78.1
000613	60	M12	G1/4"	64	3	10	21	018516	aluminium	77.1

CUPS WITH SUPPORT

Art.	Force	A	B	C	D	F	H	M	0	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	Support Art.	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset			
088515 *	14.18	69	M12	--	85	10	17	--	--	018515	000832	110.3
088516 *	14.18	69	M8	G1/4"	85	10	17	21	4.5	018516	000236	107.7
088517 *	14.18	69	M12	G1/4"	85	10	17	21	4.5	018516	000613	106.7

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS

Art.	Force	A	B	C	D	E	F	H	
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				
$\mathbf{0 1 1 1 0 1 0 *}$	23.74	96	91	87	114	3	8	17	54

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS

Art.	A	B	C	D	E	H	M	Cupart.	Support material	Weight g
	\emptyset	\emptyset	\emptyset	\emptyset						
000833	88	M12	--	92	3	11	--	0111010	aluminium	188.9
000237	88	M8	G1/4"	92	3	11	26	0111010	aluminium	188.8
000614	88	M12	G1/4"	92	3	11	26	0111010	aluminium	185.8
0008123	88	G3/8"	--	92	3	11	--	0111010	aluminium	186.1

Art.	Force	A	B	C	D	F	H	M	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	Support Art.	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset						
0811010 *	23.74	97	M12	--	114	11	17	--	0111010	000833	233.2
0811011 *	23.74	97	M8	G1/4"	114	11	17	26	0111010	000237	233.1
0811012 *	23.74	97	M12	G1/4"	114	11	17	26	0111010	000614	230.1
0811013 *	23.74	97	G3/8"	--	114	11	17	--	0111010	0008123	230.4

[^6]
FLAT CIRCULAR CUPS WITH SUPPORT

| CUPS | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Force | A | B | C | D | E | F | H |
| | Kg | \emptyset | \emptyset | \emptyset | \emptyset | | | |
| $\mathbf{0 1 1 5 0 1 0 *}$ | 45.00 | 133 | 125 | 118 | 154 | 4 | 11 | 23 |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS										
Art.	A	B	C	D	E	H	M	Cup	Support	Weight
	\emptyset	\emptyset	\emptyset	\emptyset				art.	material	g
000835	120	M12	--	127	4	15	--	0115010	aluminium	471.3
0008107	120	M12	G3/8"	127	4	15	30	0115010	aluminium	476.9
0008119	120	G3/8"	--	127	4	15	--	0115010	aluminium	478.9
0008145	120	G3/8"	G3/8"	127	4	15	27	0115010	aluminium	471.9
000615	120	M12	$\mathrm{G} 1 / 4^{\prime \prime}$	127	4	15	30	0115010	aluminium	476.3

CUPS WITH SUPPORT

Art.	Force	A	B	C	D	F	H	M	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				Art.	Art.	g
08150 10*	45.00	135	M12	--	154	15	23	--	0115010	000835	583.3
0815012 *	45.00	135	M12	G3/8"	154	15	23	30	0115010	0008107	588.9
0815013 *	45.00	135	G3/8"	--	154	15	23	--	0115010	0008119	590.9
08150 14*	45.00	135	G3/8"	G3/8"	154	15	23	27	0115010	0008145	583.9
0815016 *	45.00	135	M12	G1/4"	154	15	23	30	0115010	000615	588.3

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS						
Art.	Force	A	B	D	Compound	
	Kg	\emptyset	\emptyset	\emptyset		
$\mathbf{0 1 \mathbf { 2 2 0 1 0 ~ A }}$		78.5	180	180	220	oil-resistant rubber

SUPPORTS

Art.	A	B	C	D	H	M	Support material	Cup art.	
$\mathbf{0 0 0 8 3 7}$	1	180	M 12	$\mathrm{G} 3 / 8^{\prime \prime}$	206	12	70	aluminium	0122010 A

FLAT CIRCULAR CUPS WITH SUPPORT

CUPS									
Art.	Force	A	B	C	D	E	F	H	
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				
$\mathbf{0 1 \mathbf { 2 5 0 2 0 } \boldsymbol { * }}$	122.60	235	227	220	254	4	11	23	220

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Art.	A	B	C	D	E	H	M	Cupart.	Support material	Weight Kg
	\emptyset	\emptyset	\emptyset	\emptyset						
0008115	223	M12	G3/8"	230	4	15	70	0125020	aluminium	1.65

CUPS WITH SUPPORT

| Art. | Force | A | B | C | D | F | H | M | Cup
 Art. | Support
 Art. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 8 2 5 0 ~ 2 0 ~ * ~}$ | 122.60 | 237 | M 12 | $\mathrm{G} 3 / 8^{\prime \prime}$ | 254 | 15 | 23 | 70 | 0125020 | 0008115 |

[^7]

These foam rubber cups are made with a special compound called GERANIUM, with a density that allows them to grip even uneven
 elasticity also after many working cycles. They are provided with self-adhesive side for a quick fixing to their support. This series of cups has been designed for handling loads with raw or very rough surfaces (sawn, bushammered or flamed marble, textured, non-slip or profiled metal sheets, striped plexiglas, raw cement manufactures, garden tiles with fret, etc.) and in all those cases in which traditional cups cannot be used. In case of lubricated gripping surfaces, we recommend using NF neoprene foam rubber. The working temperature range is between $-40^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$ for OF GERANIUM foam rubber and between $-20^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$ for NF neoprene.
Their supports are made with anodised aluminium and are provided with a threaded hole in the centre for fastening them to the machine. The larger ones, on the other hand, have a side
threaded hole for vacuum connection.
For the spare part, all you have to do is request the self-adhesive foam rubber cup indicated in the table, in the required compound.

Art.	Force	D	d	E
	Kg	0	\emptyset	
0142 15	0.78	40	20	15
0164 15*	3.5	64	40	15
0192 15*	8.5	92	64	15

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

SUPPORTS

Art.	A	B	D	F	H	Support material	Cupart.	Weight g
	\emptyset	\emptyset	\emptyset					
0008147	40	M12	40	--	10	aluminium	014215	32.8
000832	60	M12	64	3	10	aluminium	016415	80.6
000833	88	M12	92	3	11	aluminium	019215	188.9
0008123	88	G3/8"	92	3	11	aluminium	019215	186.1

Art.	Force	A	B	D	d	E	F	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			Art.	Art.	g
0842 15*	0.78	40	M12	40	20	15	10	014215	0008147	35.6
086415 *	3.5	60	M12	64	40	15	10	016415	000832	86.5
0892 15*	8.5	88	M12	92	64	15	11	019215	000833	199.1
089215 3/8" *	8.5	88	G3/8"	92	64	15	11	019215	0008123	196.3

[^8]

Art.	Force	D	d	E
	Kg	\emptyset	\emptyset	
01127 15*	17.5	127	92	15
01180 15*	38.5	180	140	15
0122015 *	63.6	220	180	15

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

SUPPORTS

| Art. | A | B | C | D | F | H | M | Support
 material | Cup
 art. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0 0 8 1 0 7}$ | \emptyset | \emptyset | \emptyset | \emptyset | | | | Weight | |
| Kg | | | | | | | | | |

CUPS WITH SUPPORT

Art.	Force	A	B	C	D	d	E	F	M	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset				Art.	Art.	Kg
08127 15*	17.5	120	M12	G3/8"	127	92	15	15	30	0112715	0008107	0.49
0818015 *	38.5	160	M12	G3/8"	180	140	15	12	60	0118015	000858	0.78

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neopropene foam rubber

FLAT CIRCULAR FOAM RUBBER CUPS WITH SUPPORT

The distinctive feature of these cups is its lip made with nitrile rubber
 associated with GERANIUM or neoprene compounds. This allows a perfect grip on very rough or slotted surfaces. For this reason they are particularly suited for gripping and handling cement manufactures with with grit finished surfaces, marbles and bushammered or flamed granites.
The working temperature ranges between $-40^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$ for the GERANIUM OF compound and between $-20^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$ for the neoprene NF compound. The anodised aluminium support has a central threaded hole for fastening it to the machine and a side one, also threaded, for the vacuum connection. The cup is cold-assembled onto the support with no adhesives. For the spare part, you can simply request the desired cup indicated in the table in the desired compound.

CUPS

Art.	Force	A	B	D	H	Compound
	Kg	\emptyset	\emptyset	\emptyset		
0122010 OF	63.6	180	180	220	35	geranium foam rubber
0122010 NF	63.6	180	180	220	35	neoprene foam rubber

SUPPORTS

Art.	A	B	C	D	H	M	Support material	Cupart.	Weight Kg
	\emptyset	\emptyset	\emptyset	\emptyset					
000837	180	M12	G3/8"	206	12	70	aluminium	0122010	0.95

FLAT CIRCULAR CUPS WITH VULCANISED SUPPORT, FOR CLAMPING GLASS AND MARBLE

The manufacturers of glass and marble machining centres require increasingly accurate and safe clamping systems. This has led us to creating this new series of cups.
They are vulcanised onto a steel support and are provided with a hole in the centre for vacuum connection or for a BALL VALVE, as well as with $3 \div 4$ holes on the internal circumference for housing allen screws.
Their extremely flexible lip allows them to easily adapt themselves to the sheets to be held, with no risk of deformation or rupture, even for the thinnest ones. The particular internal support plane of these cups ensure a high friction coefficient with the gripping surface and especially a considerable grip on wet glass and marble sheets, thanks to the water drainage. All this guarantees a firm and safe grip.

Furthermore, these cups feature the highest accuracy of their thickness, whose nominal height has a tolerance of only five hundredths of millimetre.
They are normally produced with oil-resistant rubber A, but they can be ordered in other compounds, listed at page 21, upon request and in minimum quantities to be defined in the order.

CUPS WITH VULCANISED SUPPORT

Art.	Force	A	B	C	D	E	F	H	M	Support material	Weight Kg
	6.7	50	40	20.5	65	10	15	17.5	29.5	steel	0.09
$\mathbf{0 8} \mathbf{8 5 \mathbf { 1 1 ~ A }}$	12.0	70	60	40.5	85	10	15	17.5	$\mathbf{4 9 . 5}$	steel	0.14

CUP WITH VULCANISED SUPPORT

Art.	Force	A	B	C	D	E	F	H	M	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	material	Kg
0815011 A	42.7	139	130	41	150	10	15	17.5	115	steel	1.0

These cups have been designed for lifting and handling heavy loads, both vertically and horizontally. They are vulcanised onto a steel support and are provided with a central threaded hole for its fastening to the machine and with a side threaded hole for vacuum connection.
These cups have a labyrinth graved face made with the same compound as the cup, which allows gripping even the
thinnest and most fragile glass and marble sheets, with no bending in the gripping area. The shape of its lip and the choice of the compound whith which they are made with, ensure a firm
grip on uneven and corrugated surfaces. The 08 .. 40 series, along with sharing the same features, have an internal vertical
lip which allows them to grip extremely rough surfaces, such as embossed or profiled metal sheets, sawn marble or granite, wooden boards, precast cement, etc.

CUPS WITH VULCANISED SUPPORT

Art.	Force	A	B	C	D	E	F	G	H	M	N	Support material	Weight Kg
	Kg	\emptyset	\emptyset	\emptyset	\emptyset						\emptyset		
0811015 M8*	23.7	74	70	M8	110	2	14	10	26	26.0	G1/4"	steel	0.35
0811015 *	23.7	74	70	M12	110	2	14	10	26	26.0	G1/4"	steel	0.33
0815015 *	45.0	115	110	M12	150	2	14	10	26	40.0	G3/8"	steel	0.83
0820010 *	78.5	164	160	M12	200	3	14	11	28	47.5	G3/8"	steel	1.75
0825010 *	122.6	214	210	M12	250	3	14	11	28	72.5	G3/8"	steel	3.00
0830010 *	176.6	266	260	M16	300	5	15	11	31	89.0	G1/2"	steel	4.70
0835010 *	240.4	316	310	M16	350	5	15	11	31	89.0	G1/2"	steel	6.60

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	Force	A	B	C	D	E	F	G	H	M	$\begin{aligned} & N \\ & \emptyset \end{aligned}$	$\begin{aligned} & 0 \\ & \emptyset \end{aligned}$	Support material	Weight Kg
	Kg	\emptyset	\emptyset	\emptyset	\emptyset									
0811040 M8*	15.5	74	70	M8	110	3	16	7	26	26.0	G1/4"	68	steel	0.36
0811040 *	15.5	74	70	M12	110	3	16	7	26	26.0	G1/4"	68	steel	0.34
0815040 *	22.8	115	110	M12	150	3	16	7	26	40.0	G3/8"	105	steel	0.85
0820040 *	45.0	164	160	M12	200	3	17	8	28	47.5	G3/8"	148	steel	1.70
0825040 *	78.5	214	210	M12	250	3	17	8	28	72.5	G3/8"	196	steel	3.00
0830040 *	122.6	266	260	M16	300	3	18	10	31	89.0	G1/2"	248	steel	4.60
0835040 *	176.6	316	310	M16	350	3	18	10	31	89.0	G1/2"	298	steel	6.50

[^9]Conversion ratio: inch $=\frac{\mathrm{mm}}{25.4} ;$ pounds $=\frac{\mathrm{g}}{453.6}=\frac{\mathrm{Kg}}{0.4536}$

FLAT CIRCULAR CUP WITH VULCANISED SUPPORT

These cups are recommended for handling very heavy loads both vertically and horizontally.
They are vulcanised onto a steel support and have a labyrinth graved face made in the same compound as the cup.
The support is provided with four steel pins with self-locking nuts for guiding the cups and fastening them to the machine, as well as with a threaded sleeve for vacuum connection.
Morever, these cups are provided with four springs to cushion its impact with the load to be lifted.
These cups are available in the three standard compounds.

CUPS WITH VULCANISED SUPPORT

Art.	Force	A	B	E	F	G	H	I	L Kg	\emptyset	\emptyset

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

These cups have been designed for lifting objects with a central hole. Their very thin lip allow them to grip very rough surfaces, such as grinding wheels and discs.
They are particularly recommended for handling CDs,perforated discs, toothed wheels, pulleys and other similar objects. Their supports are made with anodised aluminium and are provided with a threaded hole in the centre to allow suction, as well as its fastening to the machine.
The cups are cold-assembled onto them, with no adhesives. To guarantee maximum flexibility, the cups for gripping grinding discs are made with natural para rubber N, while those for handling CDs are made with silicon S. Cups in special compounds indicated at page 21 can be provided upon request in minimum quantities to be defined in the order. For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

CUP							
Art.	Force	A	B	D	D	H	
	Kg	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	
$\mathbf{0 1 \mathbf { 2 4 } \mathbf { 0 6 ~ S }}$	0.6	25.5	15.5	24	16.5	20	

SUPPORTS

| Art. | A | B | D | E | F | H | Support
 material | Cup
 art. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0 0 8 \mathbf { 0 8 2 3 2 }}$ | 15 | G1/8" | 30 | 10 | 4 | 14 | aluminium | 012406 |

CUP WITH SUPPORT

| Art. | A | D | d | E | H | Cup | Support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \emptyset | \emptyset | \emptyset | | Art. | Weight | |
| $\mathbf{0 8 \mathbf { 0 4 } \mathbf { 0 6 ~ S ~ }}$ | 15 | 24 | 16.5 | 2.5 | 16.5 | 012406 S | 0008232 |

CIRCULAR RIM CUPS WITH SUPPORT

CUPS							
Art.	Force	A	B	D	d	F	H
	Kg	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	
$\mathbf{0 1 3 1 0 6 ~ S}$	1.25	31.5	21.5	31	18	24.5	6

SUPPORTS									
Art.	A	B	D	E	F	H	Support material	Cup art.	Weight g
$\mathbf{0 0 0 8 \mathbf { 0 8 1 }}$	\emptyset	\emptyset	\emptyset				G1/8"	36	10

SUPPORTS

Art.	A	B	C	D	E	F	G	H	N\emptyset	Support material	$\begin{aligned} & \text { Cup } \\ & \text { art. } \end{aligned}$	Weight g
	\emptyset	\emptyset	\emptyset	\emptyset								
000868	40	M12	23	35	7	10	18	25	20	aluminium	014613	47.2
000872	65	G3/8"	40	60	10	15	25	35	25	aluminium	017314	169.1
000873	76	G3/8"	51	71	10	15	27	37	25	aluminium	019514	266.0

FLAT RECTANGULAR CUPS WITH SUPPORT

These cups are recommended for working surfaces for clamping wooden panels, marble, granite, ceramic, glass, etc. They are obviously used to handle these materials. Their vertical and low lip allows for a firm grip on the surface to be clamped or handled, eliminating any oscillation and considerably reduces the air volume contained within, thus ensuring a quicker gripping and release. Cups in special compounds indicated at page 21 can be provided upon request in minimum quantities to be defined in the order.
They can be cold-assembled, with no adhesives, onto an anodised aluminium support, provided with a central threaded hole to ease its fastening to the machine.
Larger supports are provided with two threaded holes equidistant from the centre, to allow the possible insertion of guiding anti-rotation pins.
For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

CUPS

Art.	Force Kg	A	B	E	F	G	H	L	M	N	0	P	Q
014075 *	6.7	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19
0112090 *	24.0	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68
0115065 *	21.5	137	52	3	7.5	7.5	16.5	147	62	132	47	127	42
0115075 *	25.0	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORTS

Art.	N	0	P	Q	Support material	Cup art.	Weight g
000831	60	25	55	20	aluminium	014075	34.1
000834	107	75	102	70	aluminium	0112090	215.5
0008144	135	50	130	45	aluminium	0115065	176.1
000859	135	60	130	55	aluminium	0115075	218.4

CUPS WITH SUPPORT

Art.	Force Kg	A	B	C	H	L	M	P	Q	Cup Art.	Support Art.	Weight g
084075 *	6.7	66	31	6.5	16.0	76	41	55	20	014075	000831	49.7
0812090 *	24.0	112	80	7.5	17.5	120	90	102	70	0112090	000834	254.3
0815065 *	21.5	140	55	7.5	16.5	150	65	130	45	0115065	0008144	217.3
0815075 *	25.0	140	65	7.5	16.5	150	75	130	55	0115075	000859	259.6

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS													
Art.	Force Kg	A	B	E	F	G	H	L	M	N	0	P	Q
01300 80 *	60.0	288	68	3	7.5	7.5	17.5	297	77	284	64	278	58
01300150 *	113.0	288	138	3	7.5	7.5	17.5	297	147	284	134	278	128

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORTS

| Art. | D | N | 0 | P | Q | Support
 material | Cup
 art. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0 0 8 1 1 6}$ | G3/8" | 290 | 68 | 284 | 62 | aluminium | 0130080 |
| $\mathbf{0 0 0 8 1 1 7}$ | $G 1 / 2^{\prime \prime}$ | 290 | 140 | 284 | 134 | aluminium | 01300150 |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS													
Art.	Force Kg	A	B	E	F	G	H	L	M	N	0	P	Q
01120 90 *	24.0	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68
0115075 *	25.0	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS													
Art.	A	B	C	H	L	M	N	0	P	Q	Support material	Cup art.	Weight g
0008256	80	51	2.5	16.2	30	56	107	75	102	70	aluminium	0112090	244.5
0008257	110	35	2.3	16.4	20	92	135	60	130	55	aluminium	0115075	247.9

Art.	Force Kg	A	B	C	H	L	M	P	Q	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	$\begin{gathered} \hline \text { Support } \\ \text { Art. } \\ \hline \end{gathered}$	Weight g
0812090 M1 *	24.0	112	80	7.5	17.5	120	90	102	70	0112090	0008256	283.3
0815075 M1 *	25.0	140	65	7.5	16.5	150	75	130	55	0115075	0008257	289.1

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

FLAT RECTANGULAR FOAM RUBBER CUPS WITH SUPPORT

Foam rubber cups are made with a special compound called GERANIUM indicated with $O F$, with a density that allows them to grip uneven and very rough surfaces and still maintain their elasticity even after many working cycles.
These foam rubber cups have a self-adhesive side for a quick fixing to their support. These cups have been designed for handling loads with raw or very rough surfaces (sawn, bushammered or flamed marble, textured, non-slip or profiled metal sheet, striped plexiglas, raw cement manufactures, garden tiles with fret, etc.) and for all those cases in which traditional cups cannot be used. In case of lubricated gripping surfaces, we recommend using neoprene foam rubber NF.
The working temperature ranges from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ for GERANIUM foam rubber OF and from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ for neoprene foam rubber NF.
Their supports are made with anodised aluminium and they are provided with a central threaded hole to allow its fastening to the machine.
Larger supports, on the other hand, are provided with two threaded holes equidistant from the centre, for the possible insertion of guiding, anti-rotation pins.
For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

CUPS

| Art. | Force
 Kg | A | B | C |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 1 \mathbf { 1 0 7 } \mathbf { 7 5 } *}$ | 9.0 | 107 | 75 | 15 |
| $\mathbf{0 1 \mathbf { 1 3 5 } \mathbf { 5 0 }}$ | 6.0 | 135 | 50 | 15 |
| $\mathbf{0 1 \mathbf { 1 3 5 } \mathbf { 6 0 }}$ | 8.0 | 135 | 60 | 15 |

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

SUPPORTS

Art.	A	B	D	E	H	M	N	Support material	Cup art.	Weight g
000834	107	75	70	3	11	102	70	aluminium	0110775	215.5
0008144	135	50	45	3	11	130	45	aluminium	0113550	176.1
000859	135	60	55	3	11	130	55	aluminium	0113560	218.4

CUPS WITH SUPPORT

| Art. | Force | A | B | C | E | F | N | Cup
 Art. | Support.
 Art. | Weight
 g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 8 1 0 7} \mathbf{7 5}$ * | 9 | 107 | 75 | 15 | 15 | 11 | 70 | 0110775 | 000834 | 229.5 |
| $\mathbf{0 8 1 3 5} \mathbf{5 0}$ * | 6 | 135 | 50 | 15 | 15 | 11 | 45 | 0113550 | 0008144 | 190.6 |
| $\mathbf{0 8 1 3 5} \mathbf{6 0}$ * | 8 | 135 | 60 | 15 | 15 | 11 | 55 | 0113560 | 000859 | 233.0 |

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

Art.	Force	A	B	C	E
	Kg				
0129068 *	25	290	68	15	15
01290140 *	72	290	140	15	15

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

Art.	A	B	D	E	H	M	N	Support material	Cupart.	Weight Kg
			\emptyset							
0008116	290	68	G3/8"	3	11	284	62	aluminium	0129068	0.53
0008117	290	140	G1/2"	3	11	284	134	aluminium	01290140	1.13

Art.	Force	A	B	C	D	F	N	Cup	Support	Weight
	Kg				\emptyset			Art.	Art.	Kg
0829068 *	25	290	68	15	G3/8"	11	62	0129068	0008116	0.56
08290140 *	72	290	140	15	G1/2"	11	134	01290140	0008117	1.15

[^10]
FLAT RECTANGULAR FOAM RUBBER CUPS WITH SUPPORT

Foam rubber cups are made with a special compound called GERANIUM indicated with $O F$, with a density that allows them to grip uneven and very rough surfaces and still maintain their elasticity even after many working cycles.
These foam rubber cups have a self-adhesive side for a quick fixing to their support. These cups have been designed for handling loads with raw or very rough surfaces (sawn, bushammered or flamed marble, textured, non-slip or profiled metal sheet, striped plexiglas, raw cement manufactures, garden tiles with fret, etc.) and for all those cases in which traditional cups cannot be used. In case of lubricated gripping surfaces, we recommend using neoprene foam rubber NF.
The working temperature ranges from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ for GERANIUM foam rubber OF and from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ for neoprene foam rubber NF.
Their supports are made with anodised aluminium and they are provided with a central threaded hole to allow its fastening to the machine.
Larger supports, on the other hand, are provided with two threaded holes equidistant from the centre, for the possible insertion of guiding, anti-rotation pins.
For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

CUPS

| Art. | Force
 Kg | A | B | C |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 1 \mathbf { 1 0 7 } \mathbf { 7 5 } *}$ | 9.0 | 107 | 75 | 15 |
| $\mathbf{0 1 \mathbf { 1 3 5 } \mathbf { 5 0 }}$ | 6.0 | 135 | 50 | 15 |
| $\mathbf{0 1 \mathbf { 1 3 5 } \mathbf { 6 0 }}$ | 8.0 | 135 | 60 | 15 |

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

SUPPORTS

Art.	A	B	D	E	H	M	N	Support material	Cup art.	Weight g
000834	107	75	70	3	11	102	70	aluminium	0110775	215.5
0008144	135	50	45	3	11	130	45	aluminium	0113550	176.1
000859	135	60	55	3	11	130	55	aluminium	0113560	218.4

CUPS WITH SUPPORT

| Art. | Force | A | B | C | E | F | N | Cup
 Art. | Support.
 Art. | Weight
 g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 8 1 0 7} \mathbf{7 5}$ * | 9 | 107 | 75 | 15 | 15 | 11 | 70 | 0110775 | 000834 | 229.5 |
| $\mathbf{0 8 1 3 5} \mathbf{5 0}$ * | 6 | 135 | 50 | 15 | 15 | 11 | 45 | 0113550 | 0008144 | 190.6 |
| $\mathbf{0 8 1 3 5} \mathbf{6 0}$ * | 8 | 135 | 60 | 15 | 15 | 11 | 55 | 0113560 | 000859 | 233.0 |

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

Art.	Force	A	B	C	E
	Kg				
0129068 *	25	290	68	15	15
01290140 *	72	290	140	15	15

* Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

Art.	A	B	D	E	H	M	N	Support material	Cupart.	Weight Kg
			\emptyset							
0008116	290	68	G3/8"	3	11	284	62	aluminium	0129068	0.53
0008117	290	140	G1/2"	3	11	284	134	aluminium	01290140	1.13

Art.	Force	A	B	C	D	F	N	Cup	Support	Weight
	Kg				\emptyset			Art.	Art.	Kg
0829068 *	25	290	68	15	G3/8"	11	62	0129068	0008116	0.56
08290140 *	72	290	140	15	G1/2"	11	134	01290140	0008117	1.15

[^11]
FLAT RECTANGULAR CUPS WITH VULCANISED SUPPORT, FOR CLAMPING GLASS AND MARBLE

The manufacturers of glass and marble machining centres require increasingly accurate and safe clamping systems. This has led us to creating this new series of cups.
They are vulcanised onto a steel support and are provided with a hole in the centre for vacuum connection or for a BALL VALVE, as well as with 2 holes on the internal circumference for housing allen screws.
Their extremely flexible lip allows them to easily adapt themselves to the sheets to be held, with no risk of deformation or rupture, even for the thinnest ones. The particular internal support plane of these cups ensure a high friction coefficient with the gripping surface and a considerable grip on wet glass and marble sheets, thanks to the water drainage. All this guarantees a firm and safe grip.
Furthermore, these cups feature the highest accuracy of their thickness, whose nominal height has a tolerance of only five hundredths of millimetre.
They are normally produced with oil-resistant rubber A, but they can be ordered in other compounds, listed at page 21, upon request and in minimum quantities to be defined in the order.

CUP WITH VULCANISED SUPPORT

Art.	Force Kg	A	B	D \emptyset	E	F	H	\mathbf{L}	\mathbf{M}	\mathbf{N}	P	Q	Support material	Weight g
$\mathbf{0 8 5 0 7 5 ~ A}$	7.5	60	35	20.5	10	15	17.5	75	50	39.5	50	25	steel	92

These oval cups are are recessed on moulders in order to hold a side of the cardboard box during the moulding process by means of traditional cups on the opposite side. Once assembled with their support, they can be used for handling boxes, plastic objects or anything with a limited gripping suface.
Their anodised aluminium support have a central threaded hole to fasten it to the machine. They are also provided with a nickelplated brass plate to hold the cup in its housing and with one or two stainless steel screws for fixing them. For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

CUP		B	B	C	D
Art.	Force Kg	A			
$\mathbf{0 1 1 2 \mathbf { 1 2 } \text { * }}$	0.52	15	11.5	17	20

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORT

Art.	B	E	F	Support	Cup	Weight
	\emptyset			material	art.	g
000870	G1/8"	8.5	6.5	aluminium	011220	5.4

fixing plate art. 000897

TSP M3x5 screw art. 0008103

Note: By ordering art. 0008 70, the fixing plate and the TSP screw will also be provided.

CUP WITH SUPPORT

Art.	Force Kg	D	Cup	Support	Art.

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

FLAT OVAL CUPS WITH SUPPORT

CUPS					
Art.	Force	A	B	C	D
$\mathbf{0 1 1 2 ~ 3 0}$	0.82	25	21.5	27	30
$\mathbf{0 1 1 2 ~ 4 0}$	1.12	35	31.5	37	40
$\mathbf{0 1 1 2 ~ 5 0}$	1.57	50	46.5	52	55

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

fixing plate
art. $\mathbf{0 0 0 8 9 8}$ for supp. 000871
art. 000899 for supp. 000875 art. 0008100 for supp. 000876

2 TSP screws M3x5 art. $\mathbf{0 0} \mathbf{0 8 1 0 2}$

Note: By ordering the art. referring to the support, the fixing plate and the TSP screws will also be provided

OVAL CUPS WITH VULCANISED SUPPORT

The cups described in this page have been designed for for are made. Their aluminium supports are vulcanised onto the cups. One with a smooth hole for fixing the cup to the machine with an allen screw, with the housing on the inside and one with a threaded

CUP WITH VULCANISED SUPPORT

Art.	Force Kg	Support material	Weight g
$\mathbf{0 8 \mathbf { 3 2 5 2 } \text { * }}$	3.00	aluminium	12.1

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

CUP WITH VULCANISED SUPPORT

Art.	Force Kg	Support material	Weight g
$\mathbf{0 8 \mathbf { 3 2 9 9 } \text { * }}$	3.00	aluminium	11.9

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

handling X-ray sheets in hospital or other electrostatically charged films.
Their shape allows them to pick up one sheet at a time without deforming or crumpling the gripping surface and without leaving stains or prints, thanks to the special compound with which they hole. A side slot on the support prevents the cup from rotating. These cups are recommended for gripping and handling magnetic sheets, plastic sheets, thiin rubber sheets, laminated cardboard ,etc.

These cups have been designed for handling cylindrical objects, such as pipes, bottles, round profiles, etc. Its aluminium support is vulanised onto the cup and it is provided with a central threaded hole to ease its fastening to the machine and with a side hole for the possible insertion of a guiding, anti-rotation pin.
These cups can be provided in the three standard compounds: oil-resistant rubber A, natural para rubber N and silicon S.

90°

Art.	Force	gripping \emptyset		A	B	C	D	E	F	G	H	I	L	M	N	Support material	Weight g
	Kg	min	max				\emptyset										
0830 60*	3.5	30	45	26	15	10	M8	8	16	19	20.0	20	60	50	4.1	aluminium	20.3
0840 90*	8.6	50	80	40	20	14	M12	10	23	28	25.0	30	92	80	5.1	aluminium	54.8
085090 *	10.5	60	95	48	22	14	M12	10	28	34	28.5	30	92	80	5.1	aluminium	62.5

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

BELLOW CUPS WITH MALE AND FEMALE SUPPORTS

The BELLOW CUPS described in these pages have been specially designed for handling baked goods, such as bisuits, bread, pizza, etc., as well as plastic or paper bags containing chocolates, sweets, pasta, flour, powder, etc.
Thanks to their great flexibility, they can also be used to compensate flatness errors or for gripping on inclined surfaces. Their anodised aluminium supports are provided with a threaded male or female central pin to allow suction and to fasten it to the machine.
The cups can be assembled onto them with no adhesives. For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

3D drawings available at www.vuototecnica.net

CUPS								
Art.	Force	A	B	C	D	E	F	H
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			
012023 *	0.78	14.5	5.0	14	20	5	4	23
013032 *	1.76	20.0	6.5	21	30	7	5	32
014042 *	3.14	20.0	6.5	28	40	7	5	42
015053 *	4.90	27.0	10.5	35	50	10	6	53

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

FEMALE SUPPORTS

Art.	A	B	C	D	E	F	G	H	Support material	Cupart.	Weight g
	\emptyset		\emptyset	\emptyset							
0008132	14.5	13	G1/8"	8.5	12	8	5.0	17.0	aluminium	012023	3.8
0008134	20.0	17	G1/4"	10.0	14	10	7.5	21.5	aluminium	013032	8.3
										014042	
0008141	27.0	22	G1/4"	14.0	14	10	9.5	23.5	aluminium	015053	19.7

CUPS WITH FEMALE SUPPORT

Art.	Force Kg	A	B	C	D	E	F	G	H	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	Support Art.	Weight g
082023 F *	0.78	14.5	13	G1/8"	20	12	8	23	35	012023	0008132	5.6
083032 F *	1.76	20.0	17	G1/4"	30	14	10	32	46	013032	0008134	13.9
084042 F *	3.14	20.0	17	G1/4"	40	14	10	42	56	014042	0008134	19.9
085053 F *	4.90	27.0	22	G1/4"	50	14	10	53	67	015053	0008141	44.1

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

REINFORCED BELLOW CUPS WITH MALE AND FEMALE SUPPORT

The particular shape of these BELLOW CUPS allows them to quickly crumple up when in contact with the surface of the load to be lifted and in presence of a vacuum. this quick movement prevents the load below from remaining stuck to the surfaces or load underneath.
Thanks to this particular feature, these BELLOW CUPS are recommended for handling paper and cardboard sheets, thin metal sheets, wooden panels, glass sheets etc.
Thanks to their great flexibility, they can also be used to compensate flatness errors or for gripping on inclined surfaces. Their anodised aluminium supports are provided with a threaded male or female central pin to allow suction and to fasten it to the machine.
The cups can be assembled onto them with no adhesives. For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

Art.		Force	A	B	C	D	E	F
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			H
$\mathbf{0 1 \mathbf { 2 2 } \mathbf { 1 9 } \text { * }}$	0.95	14.5	5.0	11.0	22	4	5.5	19
$\mathbf{0 1 3 4} \mathbf{2 6}$ *	2.26	14.5	5.0	17.0	34	4	5.5	26
$\mathbf{0 1 \mathbf { 4 3 } \mathbf { 2 8 }}$ *	3.62	20.0	6.5	21.5	43	4	7.0	28
$\mathbf{0 1 5 3} \mathbf{3 5}$ *	5.51	27.0	10.5	30.5	53	6	9.5	35

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	A	B	$\begin{aligned} & C \\ & \emptyset \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \emptyset \end{aligned}$	E	F	G	H	Support material	Cup art.	Weight g
0008133	14.5	13	G1/8"	8.5	5.5	8	5.0	18.5	aluminium	012219	3.5
										013426	
0008135	20.0	17	G1/4"	10.0	7.5	12	7.5	27.0	aluminium	014328	9.5
0008142	27.0	22	G1/4"	14.0	7.5	12	9.5	29.0	aluminium	015335	15.7

Art.	Force	A	B	C	D	E	F	G	H	Cup	Support	Weight
	Kg	\emptyset		\emptyset	\emptyset					Art.	Art.	g
0822 19*	0.95	14.5	13	G1/8"	22	5.5	8	19	32.5	012219	0008133	6.2
083426 *	2.26	14.5	13	G1/8"	34	5.5	8	26	39.5	013426	0008133	15.2
084328 *	3.62	20.0	17	G1/4"	43	7.5	12	28	47.5	014328	0008135	18.5
0853 35*	5.51	27.0	22	G1/4"	53	7.5	12	35	54.5	015335	0008142	33.3

[^12]

CUPS								
Art.	Force	A	B	C	D	E	F	H
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			
0122 19*	0.95	14.5	5.0	11.0	22	4	5.5	19
013426 *	2.26	14.5	5.0	17.0	34	4	5.5	26
014328 *	3.62	20.0	6.5	21.5	43	4	7.0	28
015335 *	5.51	27.0	10.5	30.5	53	6	9.5	35

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	A	B	C	D	E	F	G	H	Support material	Cupart.	Weight g
	\emptyset		\emptyset	\emptyset							
0008132	14.5	13	G1/8"	8.5	8	12	5.0	17.0	aluminium	012219	3.8
										013426	
0008134	20.0	17	G1/4"	10.0	10	14	7.5	21.5	aluminium	014328	8.3
0008141	27.0	22	G1/4"	14.0	10	14	9.5	23.5	aluminium	015335	19.7

Art.	Force Kg	$\begin{aligned} & \mathrm{A} \\ & \emptyset \end{aligned}$	B	$\begin{aligned} & C \\ & \emptyset \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \emptyset \end{aligned}$	E	F	G	H	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	Support Art.	Weight g
082219 F	0.95	14.5	13	G1/8"	22	8	12	19	31	012219	0008132	6.5
083426 F *	2.26	14.5	13	G1/8"	34	8	12	26	38	013426	0008132	9.5
084328 F *	3.62	20.0	17	G1/4"	43	10	14	28	42	014328	0008134	17.3
085335 F *	5.51	27.0	22	G1/4"	53	10	14	35	49	015335	0004141	37.3

[^13]

REINFORCED BELLOW CUPS WITH SUPPORT

The cups described in these pages share the same features with the previously described BELLOW CUPS, only these have larger dimensions that allow them to lift much heavier loads; moreover, their anodised aluminium supports also have a central threaded hole for their fastening to the machine. The larger ones also have an additional side hole for vacuum connection. The difference is that these supports are provided with a disc instead of with a pin.
These cups can be cold-assembled onto their supports with no adhesives.
For the spare part, all you have to do is request the cup indicated in the table in the desired compound.

	CUP									
Art.	Force	A	B	C	D	G	H	M		
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			\emptyset		

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SUPPORTS								
Art.	A	B	D	E	H	Support	Cup	Weight
	\emptyset	\emptyset	\emptyset			material	art.	g
0008126	45	M12	54	3	10	aluminium	017542	45.5
0008143	45	G1/2"	54	3	10	aluminium	017542	41.5

Art.	Force	A	B	D	G	H	Cup	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset			Art.	Art.	g
087542 *	11.93	59	M12	78	22.5	42	017542	0008126	94.8
087542 1/2" *	11.93	59	G1/2"	78	22.5	42	017542	0008143	90.8

[^14]
REINFORCED BELLOW CUPS WITH SUPPORT

SUPPORTS										
Art.	A	B	C	D	E	N	H	Support	Cup	Weight
	\emptyset	\emptyset	\emptyset	\emptyset				material	art.	g
0008162	61	G1/2"	G1/8"	70	3	23	10	aluminium	0111058	78.9
0008163	98	G1/2"	G1/8"	107	3	35	10	aluminium	0115074	211.8

BELLOW CUPS FOR GLASS WITH SUPPORT

This range of cups has been designed for gripping vertically stocked glass sheets.
By laying the cup on the glass surface and opening the vacuum, the sheet will place itself orthogonally to the floor perfectly adhering to the cup internal face. The glass sheet can then be handled in any direction in full safety. Their aluminium aluminium support has a central threaded hole for fastening it to the machine and for the vacuum connection.
The cups can be cold-assembled onto their support with no adhesives.

Art.	Force	A	B	C	D	G	H	M	N
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			\emptyset	\emptyset
0115055 *	45.00	78	70	58	150	33	55	120	125
01210 60	86.50	138	130	118	210	38	61	180	185

* Complete the code indicating the compound: $\mathrm{A}=$ oill-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SUPPORTS

Art.	A	B	C	D	E	H	Support material	Cup art.	Weightg
	\emptyset	\emptyset	\emptyset	\emptyset					
0008280	35	G1/2"	--	70	12.5	22.5	aluminium	0115055	120
0008281	65	G1/2"	--	130	12.5	23.5	aluminium	0121060	465
0008286	35	---	8	70	12.5	22.5	aluminium	0115055	125
0008287	65	---	8	130	12.5	23.5	aluminium	0121060	470

CUPS WITH SUPPORT

Art.	Force	A	B	C	D	G	H	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	Support Art.	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset					
0815055 *	45.00	78	G1/2"	--	150	33	60	0115055	0008280	245
08210 60 *	86.50	138	G1/2"	--	210	38	67	0121060	0008281	650
0815056 *	45.00	78	---	8	150	33	60	0115055	0008286	250
0821061 *	86.50	138	---	8	210	38	67	0121060	0008287	655

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

VACUUM CUP WITH ONE BELLOW AND WITH VULCANISED SUPPORT

The cups described in this page, unlike the previous ones, are
 vulcanised onto an aluminium hexagonal support with a male or female threaded connector, inside of which there is an M8 threaded hole for the possible insertion of a calibrated grub screw (see page 1.118).
The main feature of these BELLOW CUPS is that they quickly crumple up during the grip, thus lifting the load for a few centimetres, independently of the movements of the lifting frame; this quick movement avoids that the load beneath,remains stuck to the lifted one. Due to this feature they are particularly suited for handling thin metal sheets, glass sheets, chipboard or compressed wood panels,laminated plastic etc.
Due to their high flexibility they can also be used to compensate flatness errors or for the grip of inclined surfaces.
These cups are available in the standard compounds and can be supplied in special compounds listed at page 21 in minimum amounts to be defined in the order.

CUPS WITH ONE BELLOW WITH FEMALE VULCANISED SUPPORT

Art.	Force	D	E	F	G	H	Support material	Weight g
	Kg	\emptyset						
084030 *	3.14	40	35	17	18	52	aluminium	32.4
085030 *	4.90	50	37	17	20	54	aluminium	40.9
086030 *	7.06	60	39	17	21	56	aluminium	53.6
088530 *	14.08	85	50	17	31	67	aluminium	122.0

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art.	Force	D	E	F	G	H	Support material	Weightg
	Kg	\emptyset						
084030 M *	3.14	40	35	13.5	18	56.5	aluminium	29.1
085030 M *	4.90	50	37	13.5	20	58.5	aluminium	39.0
086030 M *	7.06	60	39	13.5	21	60.5	aluminium	51.2
088530 M *	14.08	85	50	13.5	31	71.5	aluminium	115.0

[^15]These cups are the same as the ones described in the previous page, only with an additional bellow.
The technical features and availability are the same.

Art.	Force	A	D	E	F	G	H	Support	Weight
	Kg	\emptyset	\emptyset					material	g
0840 60 *	3.14	G1/4"	40	52	17	35	69	aluminium	39.6
085050 *	4.90	G1/4"	50	55	17	38	72	aluminium	49.6
086050 *	7.06	G1/4"	60	58	17	41	75	aluminium	72.4
0860 50M12 *	7.06	M12	60	58	17	41	75	aluminium	73.0
088550 *	14.08	G1/4"	85	78	17	58	95	aluminium	168.0
0885 50M12 *	14.08	M12	85	78	17	58	95	aluminium	169.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH TWO BELLOWS WITH VULCANISED MALE SUPPORT

Art.	Force	D	E	F	G	H	Support material	Weight
	Kg	\emptyset						9
0840 60M *	3.14	40	52	13.5	35	73.5	aluminium	35.5
085050 M *	4.90	50	55	13.5	38	76.5	aluminium	49.3
086050 M *	7.06	60	58	13.5	41	79.5	aluminium	66.0
0885 50M *	14.08	85	78	13.5	58	99.5	aluminium	157.0

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

The main feature of these BELLOW CUPS is that they quickly crumple up during the grip, thus lifting the load for a few centimetres, independently of the movements of the lifting frame; this quick movement avoids that the load beneath,remains stuck to the lifted one. Due to this feature they are particularly suited for handling thin metal sheets, glass sheets, chipboard or compressed
wood panels,laminated plastic etc.
Due to their high flexibility they can also be used to compensate flatness errors or for the grip of inclined surfaces.
These BELLOW CUPS are vulcanised onto a galvanised steel or aluminium support provided with a central threaded hole for fastening it to the machine and a side one for the vacuum connection or for detecting the vacuum level. Also these cups are available in the three standard compounds.

Art.	Force	A	B	C	D	E	G	H	M	N	Support material	Weight Kg
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset			
08110 30*	23.7	78	65	G1/8"	110	10	23	45	55	23	steel	0.35
0815030 *	45.0	78	65	G1/8"	150	10	33	60	75	23	steel	0.49
0818030 *	63.5	94	80	G1/8"	180	10	33	70	84	30	steel	0.81
0825030 *	122.6	130	100	G3/8"	250	15	49	100	125	35	aluminium	1.54

[^16]
SPECIAL CUPS WITH SUPPORT

These cups have been designed to solve many of the gripping and handling problems we have encountered in over thirty years of activity. They differ from all the other cups for the variety of their shapes.
They are suited for gripping CDs, labels, bags, paper or plastic sheets, stickers, cardboard, metal and plastic objects, biscuits, chocolates, etc.
Their nickel-plated brass or anodised aluminium supports are provided with a threaded male or female pin to enable suction and to fasten them to the machine.
These cups can be manually assembled onto their supports with no adhesives. They are available in the standard compounds, but they can also be provided in the special compounds listed at page 21 in minimum amounts to be defined in the order.

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 0 7 1 3 *}$	0.10	0008236	brass	3	080713^{*}	

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 0 8 0 7 *}$	0.13	0008237	brass	3	Art.	080807^{*}

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 1 1 0 8 *}$ | 0.24 | 0008238 | brass | 7 | 081108 * |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 1 4 0 9 } \boldsymbol { 0 9 }}$ | 0.38 | 0008240 | brass | 7.0 | $081409 \mathrm{~F}^{*}$ |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

[^17]
SPECIAL CUPS WITH SUPPORT

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	geight		
$\mathbf{0 1 \mathbf { 1 5 0 4 } \text { * }}$	0.44	0008241	brass	1.5	Art.	081504^{*}

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL CUPS WITH SUPPORT

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | | |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 1 7 1 2 *}$	0.60	000803	brass	9.0	081713^{*}	

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 1 9 } \mathbf { 3 1 * }}$ | 0.70 | 000809 | aluminium | 18.1 | Art. |

[^18]
SPECIAL CUPS WITH SUPPORT

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 \mathbf { 2 0 ~ 0 4 } *}$	0.78	0008242	brass	1.8	Art.	082004 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	Weight
Art.	Kg	Art.	material	g	Art.	g
012006 *	0.78	0008243	brass	6.0	0820 06 *	6.3

* Complete the code indicating the compound: $\mathrm{A}=$ oill-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	Weight
Art.	Kg	Art.	material	g	Art.	g
012008 *	0.78	000860	brass	5.6	082008 *	6.4

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

ल * Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 2 0 1 4 }}$ | 0.78 | 0008146 | brass | 9.8 | $082014{ }^{*}$ |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 \mathbf { 2 0 1 4 } \boldsymbol { ~ * ~ }}$	0.78	0008155	brass	9.1	$082014 \mathrm{~F}^{*}$	

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL CUPS WITH SUPPORT

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 2 0 } \mathbf { 2 4 } \text { * }} 1$ | 0.78 | 000803 | brass | 9.0 | 082024^{*} |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 2 2 ~ 0 6 } \text { * }}$ | 0.95 | 0008246 | brass | 5.0 | 082206 * |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL CUPS WITH SUPPORT

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	Weight
Art.	Kg	Art.	material	g	Art.	g
0122 99*	0.95	000810	brass	30.3	0822 29 *	33.1

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Art. |
| $\mathbf{0 1 \mathbf { 2 5 0 8 } \text { * }}$ | 1.23 | 000860 | brass | 5.6 | 082508 * |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 \mathbf { 2 5 1 2 } \boldsymbol { * }}$	0.11	000882	brass	11.2	082512 *	g

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup with vulcanised support | Force | Support
 art. | mg |
| :---: | :---: | :---: | :---: | | Weight |
| :---: |
| g |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup with vulcanised support	Force	Support	Weight
art.	Kg	material	g
0825 27 *	1.23	steel	5.2

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL CUPS WITH SUPPORT

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 \mathbf { 2 5 ~ 2 8 * }}$	1.23	000804	brass	8.1	$082528 \mathrm{~F}^{*}$	

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 2 6 } \mathbf { 1 0 }}$ | 1.33 | 000860 | brass | 5.6 | 082610 * |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 3 1 \mathbf { 1 2 } *}$ | 1.89 | 0008249 | brass | 1.8 | 08311^{*} |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL CUPS WITH SUPPORT

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 3 2 ~ 3 0 ~ * ~}$ | 2.00 | 0008250 | aluminium | 8.6 | 083230 * |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Art. |
| $\mathbf{0 1 \mathbf { 3 5 1 2 } \boldsymbol { ~ * ~ }}$ | 2.40 | 0008244 | brass | 5.9 | 083512 * |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SPECIAL CUPS WITH SUPPORT

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Art. |
| $\mathbf{0 1 4 0 2 5}$ | 3.14 | 0008127 | aluminium | 15.2 | 084024 * |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	g
$\mathbf{0 1 4 0 7 0}$ *	3.14	000809	aluminium	18.1	084070 *	

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 4 8 \mathbf { 1 8 } *}$ | 4.52 | 000881 | aluminium | 8.8 | $084818{ }^{*}$ |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 5 0 2 0}$ | 4.90 | 000824 | aluminium | 10.3 | 085020 * |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SPECIAL CUPS WITH SUPPORT

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 5 4 \mathbf { 1 8 }}$	1	5.72	0008248	aluminium	5.8	085418 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 6 5 \mathbf { 2 8 } \text { * }} 1$	8.20	000824	aluminium	10.3	Art.	086528 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

The main feature of these BELLOW CUPS is that they crumple up when in
 contact with surface to be gripped and in presence of a vacuum, thus creating a quick lifting movement independently from the machine. This rapid movement prevents the load beneath from remaining stuck to the lifted one. Due to their high flexibility they can also be used to compensate flatness errors or for the grip of inclined surfaces.
The cups shown in these pages are the ideal solution for our customers; in fact, they have been designed for handling biscuits, chocolate, eggs, stickers, labels, metal and plastic objects, laminated plastic, paper and plastic bags, etc. Their nickel-plated brass or anodised aluminium supports are provided with a central male or female threaded pin that enables suction and allows to fasten them to the machine.
These cups can be manually assembled onto their supports with a simple pressure and with no adhesives. They are available in the standard compounds and in the special ones listed at page 21 upon request.

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 0 8 5 0 *}$ | 0.12 | 000806 | brass | 2.6 | 080850^{*} |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	
$\mathbf{0 1 1 1 1 6}$ *	0.23	000803	brass	9.0	081117^{*}	9.7

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Art. |
| $\mathbf{0 1 \mathbf { 1 5 ~ 2 3 } *}$ | 0.44 | 000864 | brass | 13.9 | $081523 \mathrm{~F}^{*}$ |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 1 6 \mathbf { 2 0 }}$	0.50	000803	brass	9.0	081621 *	10.0

[^19]

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 \mathbf { 1 6 2 0 }}$		0.50	000804	brass	8.1	$081621 \mathrm{~F}^{*}$

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Farce	Sup)port	Support	Weight	Cup with support	Weight
Art.	kH	art.	material	g	Art.	g
011829 *	0.63	000867	brass	11.4	0818 29 *	13.2

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 1 8 2 9 } \text { * }}$ | 0.63 | 000865 | brass | 13.7 | 081830 F * |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon
* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

	$\frac{\varnothing 10}{\varnothing 6}$ 1.5		$\begin{aligned} & \text { Hex. } 12 \\ & \hline \end{aligned}$					24	
Cup	Force	Support		Support	Weight		Cup with support		Weight
Art.	Kg	Art.		material	g		Art.		g
0118 50	0.63	000862		brass	9.4		0818 52 *		10.1

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $\mathrm{A}=$ oill-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 \mathbf { 2 0 } \mathbf { 6 0 }}$		0.78	000861	brass	6.5	0820611^{*}

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 \mathbf { 2 0 } \mathbf { 6 0 } *}$ | 0.78 | 000862 | brass | 4.4 | $082062 *$ |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 \mathbf { 2 5 } \mathbf { 3 5 } \text { * }}$	1.23	000815	aluminium	12.3	Art.	082535 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

$\left.\begin{array}{cccc}\hline \text { Cup with vulcanised support } & \text { Force } & \text { Support } \\ \text { art. } & \mathrm{Kg} & \text { material }\end{array} \begin{array}{c}\text { Weight } \\ \mathrm{g}\end{array}\right]$
* Complete the code indicating the compound: $\mathrm{A}=$ oill-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 3 0 5 0}$ | 1.76 | 000850 | aluminium | 8.5 | Art. |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art	material	g	Weight	
$\mathbf{0 1 3 0 9 9 *}$	1.76	000818	aluminium	10.3	Art	083099 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 \mathbf { 3 0 } \mathbf { 9 9 } \text { * }}$	1.76	000850	aluminium	8.5	$083099 \mathrm{~F}^{*}$	

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support
Art.	Kg	Art.	material	g	Art.
$\mathbf{0 1 3 0 5 5}$ *	1.76	000818	aluminium	10.3	083055^{*}

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 3 0 5 5}$ * | 1.76 | 000850 | aluminium | 8.5 | $083055 \mathrm{~F}^{*}$ |

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup with vulcanised support	Force	Support	
art.	Kg	material	Weight
$\mathbf{0 8 3 2 4 0}$	2.00	steel	g

[^20]
SPECIAL BELLOW CUPS WITH SUPPORT

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 3 3 5 0}$		2.13	000882	brass	11.2	083350 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	Weight
$\mathbf{0 1 4 0 5 0}$	2.40	000818	aluminium	10.3	084050 *	

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Cup	Force	Support	Support	Weight	Cup with support
Art.	Kg	Art.	material	g	Weight
$\mathbf{0 1 4 0 5 0}$	2.40	000850	aluminium	8.5	$084050 \mathrm{~F}^{*}$

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 4 2 9 0}$	1	3.00	000805	brass	10.0	084290 *

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
3D drawings available at www.vuototecnica.net

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 4 2 9 0}$	1	3.00	000814	brass	9.8	084290 F *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

| Cup | Force | Support | Support | Weight | Cup with support |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Art. | Kg | Art. | material | g | Weight |
| $\mathbf{0 1 5 0 7 0}$ | 4.90 | 0008148 | aluminium | 14.5 | Art. |

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Art.	
$\mathbf{0 1 5 2 5 0}$		5.30	000826	aluminium	13.5	085250 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BELLOW CUPS WITH SUPPORT

* Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Cup	Force	Support	Support	Weight	Cup with support	
Art.	Kg	Art.	material	g	Weight	
$\mathbf{0 1 7 5 3 0}$ *	11.04	0008127	aluminium	11.5	Art.	087530 *

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

* Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SELF-LOCKING CUPS WITH TRACTION RELEASE

These cups do not require a connection to any vacuum source, since the object onto which they are laid on evacuates the air inside them. A built-in non-return valve prevents the air from entering again, thus maintaining the vacuum. To release the piece, it is sufficient to lift it a few millimetres, so to open the non-return valve, which restores the atmospheric pressure inside the cup, by letting the air in.
Since possible losses cannot be recovered, these cups a recommended only for holding objects with smooth and impermeable surfaces, such as glass, polished sheets, and other similar objects. They are particularly suited for glass carrying trolleys feeding trolleys for robotic systems. They are made with nickel-plated brass with a steel drive bush, which can be provided in the anti-rotation version upon request.

SPARE CUPS WITH VULCANISED SUPPORT

Art.	Force	A	B	D	E	G	H	Support material	Weight g
	Kg	\emptyset	\emptyset	\emptyset					
085040 *	4.90	31	G3/8"	50	16.0	6.5	29.0	steel	38.5
087540 *	11.04	31	G3/8"	75	25.0	9.0	38.0	steel	57.9
0810040 *	19.62	32	G3/8"	100	26.0	9.0	39.0	steel	78.3
0810050 *	19.62	32	G3/8"	100	30.5	15.0	43.5	steel	74.8

* Complete the code by indicating the compound: $B=B E N Z$ rubber; $N=$ natural para rubber; $S=$ silicon

SELF-LOCKING CUPS WITH TRACTION RELEASE

Art.	Force	D	E	H	Cup	Weight
	Kg	\emptyset			Art.	g
175040 *	4.90	50	16	90	085040	436
177540 *	11.04	75	25	99	087540	458
17100 40*	19.62	100	26	100	0810040	474
1710050 *	19.62	100	30	104	0810050	473

* Complete the code by indicating the compound: $B=B E N Z$ rubber; $N=$ natural para rubber; $S=$ silicon

SPARE CUPS WITH SUPPORT

Art.	Force	A	B	D	E	G	H	Cup Art.	Support Art.	Support material	Weight g
	Kg	\emptyset	\emptyset	\emptyset							
0860 10*	7.06	15	G1/4"	60	22	9.5	36	016010	000822	aluminium	20.8
088510 *	14.18	25	G1/4"	85	41	14.0	55	018510	000828	aluminium	49.3

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SELF-LOCKING CUPS WITH TRACTION RELEASE

| Art. | Force | D | E | H | Cup |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 7 \mathbf { 6 0 1 0 }}$ | Kg | 7.06 | \emptyset | | Art. |
| $\mathbf{1 7 \mathbf { 8 5 } \mathbf { 1 0 }}$ | 14.18 | 60 | 22 | 086010 | |

[^21]
BUILT-IN CUPS WITH BALL VALVE

The main feature of these cups is that they open, and
therefore they produce vacuum, only when the
load to be handled activates the sealing ball.
In this version, the gripping surface is limited by a silicon
0 -ring which guarantees the vacuum seal.
They have been specially designed for vacuum beds and they are fully made with anodised aluminium.

Art.	Force	B	d	D	E	F	G	H	I	0 -ring Art.	Weight g
	Kg	\emptyset	\emptyset	\emptyset							
050110	9.80	35×1.5	50	59	9	3	27	66	27	000514	248
050210	13.60	35×1.5	59	68	9	3	27	66	27	000515	268
050310	18.10	35×1.5	68	77	9	3	27	66	27	000516	294
050410	29.70	35×1.5	87	96	9	3	27	66	27	000519	358

These cups differ only for the seal, which is made up by
the flat cups listed in the table.
They are especially recommended for the glass industries and for all those cases in which magnetic tables cannot be used. They are made with anodised aluminium, but can be supplied in other metals upon request.

SPARE CUP

Art.	Force	A	B	C	D	E	F	H	N	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	g
0165 15*	8.29	68	63	59	65	3	7	17	27	21.4

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

BUILT-IN CUPS WITH BALL VALVE

| Art. | Force | A | B | C | D | E | H | M | Ring nut | Cup
 Art. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 5 6 5 1 5 *}$ | 8.29 | 69 | 25×1.5 | 40 | | | | | Weight | |
| g | | | | | | | | | | |

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

BUILT-IN CUPS WITH BALL VALVE

* Complete the code by indicating the compound: $A=$ oill-resistant rubber; $N=$ natural para rubber; $S=$ silicon

BUILT-IN CUPS WITH BALL VALVE

Art.	Force	A	B	C	D	E	H	M	Ring nut	Cup	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset					art.	g
0585 15*	14.18	69	25×1.5	40	85	19	80	22	KM 5	018515	272
0511010 *	23.74	97	25×1.5	40	114	19	80	22	KM 5	0111010	422
0515010 *	45.00	135	35×1.5	80	154	25	86	32	KM 7	0115010	894

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

The main feature of the special built-in cups is that they open, and therefore produce vacuum, only when the load to be clamped activates the sealing ball. Especially designed for the vacuum operated beds of woodworking machines, they differ from the previously described ones because of the high precision of their cylindrical support, which is ground to size, and because of their square closing block, which prevents the cup from rotating and enables connection to vacuum.
The cold-assembled cups are the flat ones listed in the table in the various compounds. Their support is made with anodised aluminium, while the closing block is made with brass.

SPARE CUP

Art.	Force	A	B	C	D	E	F	H	N	
	Kg	\emptyset	\emptyset	\emptyset	\emptyset			Weight		
$\mathbf{0 1 6 5 1 5}$ *	8.29	68	63	59	65	3	7	17	27	21.4

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BUILT-IN CUPS WITH BALL VALVE

Art.	Force	A	B	C	D	E	F	G	H	M	Cup Art.	
	8.29	69	40	M5	65	19	31.5	16.0	51.5	20	016515	456

[^22]

SPARE CUP										
Art.	Force	A	B	C	D	E	F	H	N	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	g
016515 *	8.29	68	63	59	65	3	7	17	27	21.4

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BUILT-IN CUPS WITH BALL VALVE

Art.	Force	A	B	D	E	F	G	H	Cup	Weight g
	Kg	\emptyset	\emptyset	\emptyset					Art.	
056565 *	8.29	69	40	65	19	47.5	14.5	67.5	016515	528

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Art.	Force	A	B	C	D	E	F	H	N	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	
0185 15*	14.18	68	63	59	85	3	7	17	27	29.7
0111010 *	23.74	96	91	87	114	3	8	17	54	44.3

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Art.	Force	A	B	C	D	E	F	G	H	M	Cup	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset						Art.	
058515 M *	14.18	69	40	M5	85	19	31.5	16.0	51.5	20	018515	466
0511010 M *	23.74	97	40	M5	114	19	32.0	16.0	52.0	20	0111010	614

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Art.	Force	A	B	C	D	E	F	H	N	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	
018515 *	14.18	68	63	59	85	3	7	17	27	29.7
0111010 *	23.74	96	91	87	114	3	8	17	54	44.3

* Complete the code by indicating the compound: $A=$ oill-resistant rubber; $N=$ natural para rubber; $S=$ silicon

SPECIAL BUILT-IN CUPS WITH BALL VALVE

Art.	Force	A	B	D	E	F	G	H	Cup	Weight
	Kg	\emptyset	\emptyset	\emptyset					Art.	g
0585 65	14.18	69	40	85	19	47.5	14.5	67.5	018515	536
0511065 *	23.74	97	40	114	19	48.0	14.5	68.0	0111010	674

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CIRCULAR CUPS WITH SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

Art.	Force	A	B	C	D	E	F	H	N	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	g
018515 *	14.18	68	63	59	85	3	7	17	27	29.7
0111010 *	23.74	96	91	87	114	3	8	17	54	44.3
0115010 *	45.00	133	125	118	154	4	11	23	64	112.0

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH SELF-LOCKING SUPPORT

Art.	Force	A	B	C	D	E	F	G	H	Cup Art.	0 -ring Art.	Weight Kg
	Kg	\emptyset	\emptyset		\emptyset							
1685 15 *	14.5	98	60	41	85	17	49.0	56.0	54.5	018515	001606	0.542
1611010 *	24.0	125	88	58	114	17	50.0	56.0	54.5	0111010	001607	1.056
1615010 *	45.0	165	120	76	154	23	49.5	57.5	54.5	0115010	001608	1.858

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CIRCULAR CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves. All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

SPARE CUPS

Art.	Force	A	B	C	D	E	F	H	N	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	
0185 15*	14.18	68	63	59	85	3	7	17	27	29.7
0111010 *	23.74	96	91	87	114	3	8	17	54	44.3
0115010 *	45.00	133	125	118	154	4	11	23	64	112.0

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

Art.	Force	A	B	C	D	E	F	G	H	I	Cup Art.	0 -ring Art.	Weight Kg
	Kg	\emptyset	\emptyset		\emptyset								
188515 *	14.5	98	60	41	85	17	49.0	56.0	54.5	1	018515	001606	0.580
1811010 *	24.0	125	88	58	114	17	50.0	56.0	54.5	1	0111010	001607	1.106
1815010 *	45.0	165	120	76	154	23	49.5	57.5	54.5	1	0115010	001608	1.926

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The gripping plane of these cups is covered with a special non-slip plastic coating, which is particularly suited for clamping glass and smooth marble.
The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.
Note: Available with support for mechanical fixing with code 28, instead of 18.

SPARE CUPS

Art.	Force	A	B	C	D	E	F	H	N	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	g
018515 M *	14.18	68	63	59	85	3	7	17	53	26.2
0111010 M *	23.74	96	91	87	114	3	8	17	80	40.1
0115010 M *	45.00	133	125	118	154	4	11	23	117	98.3
0125020 *	122.60	235	227	220	254	4	11	23	220	188.6

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

Art.	Force	A	B	C	D	F	G	1	L	M	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	0 -ring Art.	Weight Kg
	Kg	\emptyset	\emptyset		\emptyset								
1885 15/90 MT *	14.18	60	98	42	85	17	85.0	1	30	12	018515 M	001606	0.880
18110 10/90 MT *	23.74	88	125	51	114	17	85.5	1	30	12	0111010 M	001607	1.704
18150 10/90 MT *	45.00	120	165	68	154	23	85.0	1	30	12	0115010 M	001608	3.158
18250 20/90 MT *	122.60	223	270	121	254	23	85.0	1	33	15	0125020	001809	10.322

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

CIRCULAR CUPS WITH BALL VALVE AND

HIGH SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system. Their distinctive feature, with respect to the previous ones, is their exceptional height.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The gripping plane of these cups is covered with a special non-slip plastic coating, which is particularly suited for clamping glass and smooth marble.
The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.
Note: Available with support for mechanical fixing with code 28, instead of 18.

SPARE CUPS

Art.	Force	A	B	C	D	E	F	H	N	Weight g
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	
0111010 M *	23.74	96	91	87	114	3	8	17	80	40.1
0115010 M *	45.00	133	125	118	154	4	11	23	117	98.3
0125020 *	122.60	235	227	220	254	4	11	23	220	188.6

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

CUPS WITH BALL VALVE AND HIGH SELF-LOCKING SUPPORT

Art.	Force	A	B	C	D	E	F	I	L	M	Cup	0 -ring art.	Weight Kg
	Kg	\emptyset	\emptyset		\emptyset						art.		
18110 10/160 MT *	24.0	88	125	51	114	17	30	1	155.5	12	0111010 M	001607	2.986
18150 10/160 MT *	45.0	120	165	68	154	23	30	1	155.5	12	0115010 M	001608	5.042
18250 20/160 MT *	122.6	223	270	121	254	23	33	1	155.5	15	0125020	001809	12.634

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

CIRCULAR CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT, FOR GLASS

Glass machinery manufacturers require increasingly accurate and safe clamping machines. This has led us to the creation of this series of cups.
The specially designed shape of this cup guarantees a firm grip. The other main feature is the utmost precision in the height, whose nominal size has a tolerance of only five hundredths of millimetre.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The gripping plane of these cups is covered with a special non-slip plastic coating, which is particularly suited for clamping glass and smooth marble. The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.

SPARE CUP											
Art.	Force	A	B	C	D	E	F	H	M	Support	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	material	g
086511 A	6.7	50	40	20.5	65	10	15	17.5	29.5	steel	90

CUP WITH BALL VALVE AND SELF-LOCKING SUPPORT

Art.	Force Kg	A \emptyset	B	C	D	E	F	G	H	I	L	M	N	Cup Art.	0-ring Art.	Weight Kg
$\mathbf{1 8 6 5 1 1 / 9 0}$	6.7	70	98	45	65	17.5	30	92.5	90	1	75	12	50	086511 A	001606	1.090

CIRCULAR CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON, FOR GLASS

Glass machinery manufacturers require increasingly accurate and safe clamping machines. This has led us to the creation of this series of cups.
The specially designed shape of this cup guarantees a firm grip. The other main feature is the utmost precision in the height, whose nominal size has a tolerance of only five hundredths of millimetre.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- A release button that allows placing the support even with the vacuum inserted.
- Two quick couplings for vacuum connection.

The gripping plane of these cups is covered with a special non-slip plastic coating, which is particularly suited for clamping glass and smooth marble.
The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.

SPARE CUP

Art.	Force	A	B	C	D	E	F	H	M	Support material	Weight g
	12	12	70	60	40.5	85	10	15	17.5	49.5	steel

CUP WITH BALL VALVE AND SELF-LOCKING SUPPORT AND RELEASE BUTTON

Art.	Force	A	B	C	D	G	I	L	Cup art.	0 -ring art.	Weight Kg
	Kg	\emptyset	\emptyset		\emptyset						
2185 11/90 A	12.0	70	98	42	85	92.5	1	75	088511 A	001606	1.090

CIRCULAR CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON, FOR GLASS

SPARE CUP

Art.	Force	A	B	C	D	E	F	H	M	Support material	Weight Kg
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset		
0815011 A	42.7	139	130	41.0	150	10	15	17.5	115.0	steel	1.0

Art.	Force	A	B	C	$\begin{array}{ll}\text { D } & \text { G } \\ 0\end{array}$		D G	L	M	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	0-ring Art.	Weight Kg
	Kg	\emptyset	\emptyset									
1150 11/90 A	42.7	129	165	73	150	92.5	1	75	15	0815011 A	001608	3.938

CIRCULAR CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- A release button that allows placing the support even with the vacuum inserted.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

SPARE CUPS

Art.	Force	A	B	C	D	E	F	H	N	Weight
	Kg	\emptyset	\emptyset	\emptyset	\emptyset				\emptyset	g
0111010 M *	23.74	96	91	87	114	3	8	17	80	40.1
0115010 M *	45.00	133	125	118	154	4	11	23	117	98.3

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

Art.	Force	A	B	C	D	E	G	H	L	M	Cup	0 -ring	Weight
	Kg	\emptyset	\emptyset		\emptyset						Art.	Art.	Kg
2111010 *	24	88	125	58	114	17	56.0	54.5	50.0	10	0111010 M	001607	1.148
2115010 *	45	120	165	76	154	23	57.5	54.5	49.5	28	0115010 M	001608	2.042

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.
- A standard rectangular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- Two quick couplings for vacuum connection. The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

SPARE CUPS

Art.	Force Kg	A	B	E	F	G	H	L	M	N	0	P	Q	Weight g
014075 *	6.7	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19	15.6
0112090 *	24.0	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68	38.8
0115075 *	25.0	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52	41.2

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

CUPS WITH SELF-LOCKING SUPPORT

Art.	Force Kg	A	B	C	D	E	F	G	H	I	L	M	N	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	0-ring Art.	Weight Kg
164075 *	6.7	41	76	48	83	16.0	51	56.5	54.5	30.5	55	26.5	20	014075	001609	0.260
1612090 *	24.0	90	120	98	128	17.5	50	57.0	54.5	56.0	102	49.0	70	0112090	001610	1.166
1615075 *	25.0	75	150	83	144	16.5	50	57.0	54.5	48.0	130	57.0	55	0115075	001610	1.177

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

RECTANGULAR CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system. Sono
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.
- A standard rectangular flat cup which is cold-assembled onto the upper part of the support for gripping the load. - A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection. The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

SPARE CUPS														
Art.	Force	A	B	E	F	G	H	L	M	N	0	P	Q	Weightg
	Kg													
014075 *	6.7	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19	15.6
0112090 *	24.0	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68	38.8
01150 75 *	25.0	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52	41.2

* Complete the code by indicating the compound: $\mathrm{A}=$ oill-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

Art.	Force Kg	A	B	C	D	E	F	G	I	L	M	N	0	P	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \\ & \hline \end{aligned}$	0-ring Art.	Weight Kg
184075 *	6.7	41	76	48	83	16.0	51	56.5	41.5	55	26.5	15.0	2	21.0	014075	001609	0.352
18120 90 *	24.0	90	120	98	128	17.5	50	57.0	56.0	102	49.0	35.0	1	35.0	0112090	001610	1.224
1815075 *	25.0	75	150	83	144	16.5	50	57.0	48.0	130	57.0	27.5	1	27.5	0115075	001610	1.194

[^23]
RECTANGULAR CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited
by a seal whose purpose is to fix it to the bearing surface.
- A standard rectangular flat cup which is cold-assembled onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves. All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes. Note: Available with support for mechanical fixing with code 28, instead of 18.

SPARE CUPS

Art.	Force Kg	A	B	E	F	G	H	L	M	N	0	P	Q	Weight g
014075 *	6.7	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19	15.6
01120 90*	24.0	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68	38.8
0115075 *	25.0	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52	41.2
0130080 *	60.0	288	68	3	7.5	7.5	17.5	297	77	284	64	278	58	80.0
01300150 *	113.0	288	138	3	7.5	7.5	17.5	297	147	284	134	278	128	90.0

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

Art.	Force Kg	A	B	C	D	E	F	G	I	L	M	N	0	P	Q	R	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	0 -ring Art.	Weight Kg
1840 75/90 MT *	6.7	41	76	48	83	16.0	55	92.0	2	86.5	26.5	37.0	21.0	15.0	30	17	014075	001609	0.570
18120 90/90 MT *	24.0	90	120	98	128	17.5	102	92.5	1	85.5	49.0	51.0	35.0	35.0	30	12	0112090	001610	1.898
18150 75/90 MT *	25.0	75	150	83	144	16.5	130	92.5	1	85.5	57.0	43.5	27.5	27.5	30	12	0115075	001610	1.924
18300 80/90 MT *	60.0	80	300	90	310	17.5	284	92.5	1	85.5	140.0	47.0	31.0	31.0	33	15	0130080	001810	4.632
18300 150/90 MT *	113.0	150	300	160	310	17.5	284	92.5	1	85.5	140.0	83.0	67.0	67.0	33	15	01300150	001811	9.534

[^24]
RECTANGULAR CUPS WITH BALL VALVE AND HIGH SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system. Their distinctive feature, with respect to the previous ones, is their exceptional height.

They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.
- A standard rectangular flat cup which is cold-assembled onto the upper part of the
support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be
gripped.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or
have different sizes.
Note: Available with support for mechanical fixing with code 28, instead of 18.

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silcon $B A=$ shain-messtant Biond

CUPS WITH BALL VALVE AND HIGH SELF-LOCKING SUPPORT

Art.	Force Kg	A	B	C	D	E	F	G	H	M	N	0	P	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	0 -ring Art.	Weight Kg
18120 90/160 MT *	24.0	90	120	98	128	17.5	102	12	30	49.0	51.0	35.0	35.0	0112090	001610	3.450
18150 75/160 MT *	25.0	75	150	83	144	16.5	130	12	30	57.0	43.5	27.5	27.5	0115075	001610	3.262
18300 80/160 MT *	60.0	80	300	90	310	17.5	284	15	33	140	47.0	31.0	31.0	0130080	001810	7.906
18300 150/160 MT *	113.0	150	300	160	310	17.5	284	15	33	140	83.0	67.0	67.0	01300150	001811	13.110

[^25]
RECTANGULAR CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT, FOR GLASS

Glass machinery manufacturers require increasingly accurate and safe clamping machines. This has led us to the creation of this series of cups. The specially designed shape of this cup guarantees a firm grip. The other main feature is the utmost precision in the height, whose nominal size has a tolerance of only five hundredths of millimetre.

They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface. - A standard rectangular flat cup which is cold-assembled onto the upper part of the support for gripping the load. - A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.

SPARE CUP

Art.	Force	A	B	D	E	F	H	L	M	N	P	Q	Support	Weight
	Kg			\emptyset									material	g
085075 A	7.5	60	35	20.5	10	15	17.5	75	50	39.5	50	25	steel	92

CUP WITH BALL VALVE AND SELF-LOCKING SUPPORT

Art.	Force Kg	A	B	C	D	E	G	I	L	P	Q	$\begin{aligned} & \hline \text { Cup } \\ & \text { Art. } \\ & \hline \end{aligned}$	0-ring Art.	Weigh Kg
$185075 / 90$ A	7.5	50	75	65	95	1	92.5	41	75	21	17.5	085075 A	001606	0.762

RECTANGULAR CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

These cups represent a true mobile clamping system.
They are composed of:

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal, whose purpose is to fix it to the bearing surface. - A standard rectangular flat cup which is cold-assembled onto the upper part of the support for gripping the load. - A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- A release button that allows placing the support even with the vacuum inserted.
- Two quick couplings for vacuum connection.

The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.
All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

SPARE CUPS													
Art.	Force Kg	A	B	E	F	G	H	L	M	N	$\mathbf{0}$	P	Q
$\mathbf{0 1 4 0 7 5 *}$	6.7	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19

* Complete the code by indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

Art. 214075 PL

CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

Art.	Force Kg	A	B	C	G	H	L	M	N	$\begin{aligned} & \text { Cup } \\ & \text { Art. } \end{aligned}$	0 -ring Art.	Weight Kg
214075 PL	6.7	41	55	7	56.5	54.5	51	45.5	12	014075	001609	0.460
2140 75/84 PL *	6.7	41	55	7	86.5	84.0	81	45.5	12	014075	001609	0.702
214075 PP *	6.7	41	55	25	56.5	54.5	51	45.5	45	014075	001609	0.460
2140 75/ 84 PP *	6.7	41	55	25	86.5	84.0	81	45.5	45	014075	001609	0.702

[^26]Conversion ratio: inch $=\frac{\mathrm{mm}}{25.4} ;$ pounds $=\frac{\mathrm{g}}{453.6}=\frac{\mathrm{Kg}}{0.4536}$

RECTANGULAR CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

SPARE CUPS

Art.	Force Kg	A	B	E	F	G	H	L	M	N	0	P	Q	Weight g
01120 90 *	24.0	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68	38.8
0115075 *	25.0	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52	41.2

* Complete the code by indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

Art.	Force	A	B	C	D	F	G	H	L	M	N	0	P	Q	T	Cup	0 -ring	Weight
	Kg															Art.	Art.	Kg
2112090 *	24	90	120	56	102	17.5	57.0	54.5	50	98	128	70	24	25	49	0112090	001610	1.320
2115075 *	25	75	120	48	130	16.5	57.0	54.5	50	83	144	55	25	32	57	0115075	001610	1.236
21150 75/84 *	25	75	150	48	130	16.5	86.5	84.0	80	83	144	55	25	32	57	0115075	001610	1.924

* Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

Bernoulli's theorem explains many phenomena, such as the lifting of a plane's wing or of a light disc in front of a tube end from which air
 flows out quickly.
This apparently paradoxical phenomenon is exploited for manufacturing vacuum gripping systems (vacuum cups) and handling, with no contact, fragile objects, such as semiconductor plates, silica discs, solar cells, precious metal foils, films and whatever needs to be handled with the
greatest care.
Our cups based on Bernoulli's principle are made with anodised aluminium, with stainless steel centre thrust disc.
The antistatic silicon spacers, located on the cup gripping plane, prevent transverse movements of the gripped object.
The compressed air supply connections can be axial and radial and the quick coupler for the flexible pipe is included in the package.

The unused holes are closed with brass threaded caps.
On the rear part of the cup there are 3 or 4 threaded holes for fiving it to
the machine.

BERNOULLI'S THEOREM

Lifting of a light disc in front of a tube end from which air flows out at high speed:

1) Air duct
2) Body of the device
3) Disc to be lifted

3D drawings available at www.vuototecnica.net

[^0]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^1]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^2]: * Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

[^3]: * Complete the code indicating the compound: $\mathrm{B}=\mathrm{BENZ}$ rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon
 ${ }^{\circ}$ Available with NPT thread. Order example: VRS 80 NPT B

[^4]: * Complete the code indicating the compound: $B=B E N Z$ rubber; $N=$ natural para rubber; $S=$ silicon
 ${ }^{\circ}$ Available with NPT thread. Order example: VES 4080 NPT B

[^5]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^6]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^7]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^8]: * Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

[^9]: * Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

[^10]: * Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

[^11]: * Complete the code indicating the compound: $\mathrm{OF}=$ geranium foam rubber; $\mathrm{NF}=$ neoprene foam rubber

[^12]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^13]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^14]: * Complete the code indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

[^15]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^16]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^17]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^18]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^19]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^20]: * Complete the code indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^21]: * Complete the code by indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

[^22]: * Complete the code by indicating the compound: $\mathrm{A}=$ oil-resistant rubber; $\mathrm{N}=$ natural para rubber; $\mathrm{S}=$ silicon

[^23]: * Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

[^24]: * Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

[^25]: * Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon; $B A=$ stain-resistant Biond

[^26]: * Complete the code by indicating the compound: $A=$ oil-resistant rubber; $N=$ natural para rubber; $S=$ silicon

